ARCHAEOLOGICAL SURVEY, TESTING, AND DAMAGE ASSESSMENT OF THE LEWIS MOUND AND VILLAGE SITE (9BN39); FORT STEWART MILITARY RESERVATION, BRYAN COUNTY, GEORGIA

BY
THOMAS J. PLUCKHAHN

LAMAR Institute Publication 39
LAMAR Institute
1996
Frontispiece: Whelk shell recovered from Shovel Test North 570 East 520 on the Lewis Mound and Village Site (9BN39)
Abstract

The LAMAR Institute conducted archaeological survey and testing on a one hundred acre tract on the eastern portion of Fort Stewart Military Reservation in Bryan County, Georgia. The focus of the project was on the Lewis Mound and Village site (9BN39), a small burial mound that was first recorded on a reconnaissance level survey of the reservation in 1982 (Miller et al. 1983). The purpose for the testing was to determine the period of occupation of the Lewis Mound site; to delineate its spatial extent; to assess the damage that had been done to the site through logging, agriculture, and looting activities; and, finally, to make a definitive statement of eligibility to the National Register of Historic Places. The focus of the survey was on locating sites in the immediate area that may be related to 9BN39, but included the identification and documentation of any and all sites in the project area. Management information is presented in Table 1.

The testing of site 9BN39 included detailed topographic mapping, shovel testing at 10 m intervals, and the excavation of a number of test pits (five 1 x 2 m trenches and three 2 x 2 m squares). The results of this testing demonstrate that the Lewis Mound and Village site contains relatively dense deposits from a number of broad cultural periods. Prehistoric components on the site range from the Late Archaic to Mississippian periods. The most substantial of these appears to date to the Savannah subperiod of the Mississippian, and it is this period to which the mound is tentatively assigned. The testing also identified a hitherto unrecognized historic component on the site which likely represents the remains of an eighteenth century home.

The testing results demonstrate that site 9BN39 contains preserved features and artifact distribution patterns. Although the mound itself has been damaged by looting, these activities have not extended to the surrounding village area. Moreover, the site has been only minimally impacted by cultivation, logging, or military activities. The site has the potential to yield important information on prehistoric and early historic lifeways, and is recommended eligible for nomination to the National Register of Historic Places.

The survey resulted in the identification of three sites, all of which are prehistoric artifact scatters. The largest of these, site 9BN133, stretches approximately 200 m on a thin ridge to the west of the Lewis Mound site. Thirty-two of the 48 shovel tests on this site were positive. Artifact density was high in several of these tests, suggesting the possibility that the site was intensively occupied, and may therefore contain features such as postmolds, pits, and hearths. Artifact distribution patterns could also be preserved on the site. Prehistoric components on the site range from the Late Archaic to Middle Mississippian. Also present is a historic earthwork, possibly the remnants of a dam or causeway. As a possible outlying settlement associated with the Lewis Mound, site 9BN133 appears to have considerable research potential. Additional testing should be conducted to assess the nature and integrity of the deposits. Until such testing can be undertaken, we recommend the site potentially eligible to the National Register.

The other two sites identified on the survey (9BN134 and 9BN135), while possibly also related to the Lewis Mound, are small and exhibit low artifact density. Instead of actual residences, these appear to have been the location of brief, specialized activities. They are unlikely to contain features, or to provide important, new information. As a result, these sites are recommended ineligible to the National Register.
Table 1. Management Information for Sites in the Project Area.

<table>
<thead>
<tr>
<th>State Site #</th>
<th>Field Site #</th>
<th>Site Type</th>
<th>Component(s)</th>
<th>NRHP Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9BN39</td>
<td></td>
<td>prehistoric burial mound and artifact scatter historic artifact scatter</td>
<td>Late Archaic Early Woodland Middle Woodland Late Woodland Early Mississippian Middle Mississippian 18th Century Historic</td>
<td>Eligible</td>
</tr>
<tr>
<td>9BN133</td>
<td>FS1</td>
<td>prehistoric artifact scatter historic earthwork (possible dam or dike)</td>
<td>Late Archaic Early Woodland Middle Woodland Early Mississippian Middle Mississippian unidentified historic</td>
<td>Potentially Eligible</td>
</tr>
<tr>
<td>9BN134</td>
<td>FS2</td>
<td>prehistoric artifact scatter</td>
<td>Early Mississippian Middle Mississippian</td>
<td>Ineligible</td>
</tr>
<tr>
<td>9BN135</td>
<td>FS3</td>
<td>prehistoric artifact scatter</td>
<td>Late Archaic Middle Mississippian</td>
<td>Ineligible</td>
</tr>
</tbody>
</table>
Acknowledgements

This report resulted from the efforts of a number of individuals. In particular, David McKivergan of the Department of Public Works on Fort Stewart is acknowledged for his support throughout the project. The generous support of Tom Gresham and Chad Braley of Southeastern Archeological Services is greatly appreciated.

A number of individuals contributed efforts to the fieldwork, laboratory analysis, and report preparation. Michele Martin handled the accounting, while Michelle Riley formatted the report. Mark Williams, Chad Braley, and Chester DePratter lent their advice and expertise to the laboratory analysis. Mark also edited the report. Gisela Weis-Gresham drafted most of the illustrations, and John Chamblee provided site distribution data. Finally, but perhaps most importantly, the field crew consisted of Joey Charles, Michelle Elmore, Melissa Memory, Johanna Minich, Kirsteen Pluckhahn, Dave Rauppius, Ron Schoettner, and Margaret Wyman.
Table of Contents

Abstract .. i

Acknowledgements ... iii

List of Figures .. vii

List of Tables ... ix

CHAPTER 1 Introduction and Background .. 1
 The Natural Setting ... 1
 The Cultural Setting .. 6
 Previous Research .. 26

CHAPTER 2 Methods ... 31
 Literature Review ... 31
 Field Methods ... 31
 Laboratory Methods .. 34
 Evaluation Criteria ... 39
 Curation .. 40

CHAPTER 3 Archaeological Investigations of the Lewis Mound Site 41
 Shovel Tests ... 48
 Test Units ... 53

CHAPTER 4 Material Culture and Components on the Lewis Mound Site 67
 Prehistoric Ceramics .. 67
 Prehistoric Lithics .. 81
 Other Prehistoric Artifacts .. 84
 Historic Artifacts .. 86
 Occupational History ... 88
 OCR Dating ... 94
 Intrasite Settlement and Artifact Distribution Patterns ... 94

CHAPTER 5 Survey Results ... 97
 Site 9BN133 .. 97
 Site 9BN134 .. 103
 Site 9BN135 .. 105

CHAPTER 6 Regional Context for the Survey and Testing Results 107

CHAPTER 7 Eligibility and Management Recommendations 121
 The Lewis Mound and Village Site (9BN39) ... 121
 Site 9BN133 .. 124
 Sites 9BN134 and 9BN135 .. 124
Appendix A Artifact Inventory for the Lewis Mound Sites
List of Figures

Figure 1. Location of the Project Area .. 2
Figure 2. Map of the Project Area Showing the Locations of Sites 3
Figure 3. Location of the Project Area Relative to Physiographic Provinces .. 4
Figure 4. Soil Types in the Project Area. Copied from Wilkes et al. (1974) ... 6
Figure 5. Plat Map of William LeConte's First Grant in the Barbecue Creek Area . 20
Figure 6. Plat Map of William LeConte's Second Grant in the Barbecue Creek Area . 21
Figure 7. Plat Map of the Tract Surveyed for William Wainwright 22
Figure 8. Plat Map of John Jagger's Grant in the Barbecue Creek Area 23
Figure 9. Plat Map of Tract Granted to Robert Houston 24
Figure 10. Conjectural Locations of Land Grants in the Barbecue Creek Area .. 24
Figure 11. Portion of the 1920 USGS Limerick Quadrangle that Includes the Project Area .. 27
Figure 12. Map of the Survey Area Showing the Locations of Sites, Off-Site Shovel Tests, and Survey Conditions 32
Figure 13. Recording the Profile Of Test Unit 7 on Site 9BN39 34
Figure 14. Portion of a 1948 Aerial Photograph that Includes the Project Area 41
Figure 15. Reproduction of Professional Analysts (1982) Sketch Map of the Lewis Mound .. 42
Figure 16. Reproduction of Professional Analysts Sketch of the Profile of the Lewis Mound .. 43
Figure 17. Detailed Topographic Map of Site 9BN39 45
Figure 18. Detailed Topographic Map of the Lewis Mound 46
Figure 19. North-South and East-West Profiles of the Lewis Mound 47
Figure 20. View to the East of the Lewis Mound from Grid Location N505 E485 . 48
Figure 21. Density of Prehistoric Artifacts in Shovel Tests on 9BN39 49
Figure 22. Density of Prehistoric Sherds in Shovel Tests on 9BN39 50
Figure 23. Density of Prehistoric Lithics in Shovel Tests on 9BN39 50
Figure 24. Density of Refuge and Deptford Series Sherds in Shovel Tests on 9BN39 .. 51
Figure 25. Density of Grog Tempered Sherds in Shovel Tests on 9BN39 51
Figure 26. Density of Savannah Series Sherds in Shovel Tests on 9BN39 52
Figure 27. Density of Historic Artifacts in Shovel Tests on 9BN39 52
Figure 28. The East Profile of Test Unit 1 on Site 9BN39 54
Figure 29. The East Profile of Test Unit 2 .. 55
Figure 30. The North Profile of Test Unit 3 56
Figure 31. Excavation of Unit 4 on 9BN39 57
Figure 32. The East Profile of Test Unit 4 on Site 9BN39 58
Figure 33. The East Profile of Test Unit 5 on Site 9BN39 59
Figure 34. The West Profile of Test Unit 6 on Site 9BN39 60
Figure 35. Feature 3 in Test Unit 7 on Site 9BN39 Prior to Excavation 61
Figure 36. Plan Views of Features 3 and 4 in Test Unit 7 on Site 9BN39 62
Figure 37. East and South Profiles of Test Unit 7 on Site 9BN39 63
Figure 38. Photograph of the East Profile of Test Unit 7 on 9BN39 64
Figure 39. Photograph of the South Profile of Test Unit 7 on 9BN39 64
Figure 40. The North Profile of Test Unit 8 on Site 9BN39 66
Figure 41. Sherds Per Square Meter in Test Units on 9BN39 67
Figure 42. The Number of Sherds/Square Meter for Each Ceramic Series in Test Units on 9BN39 .. 69
Figure 43. Saint Simons Plain sherd from Level 4 in Test Unit 3 70
Figure 44. Selected Refuge and Deptford Sherds from the Lewis Mound Site 72
Figure 45. Comparison of Refuge/Deptford Series Pottery from the Lewis Mound (9BN39) and Deptford (9CH2) Sites .. 73
Figure 46. Comparison of the Frequency of Walthour and Wilmington Pottery Types on 9BN39 with those on 9CH11 and 9CH16 ... 74
Figure 47. Selected Walthour, Wilmington, and Saint Catherines Sherds from the Lewis Mound Site .. 75
Figure 48. Comparison of the Frequency of Saint Catherines Ceramics on 9BN39 with those on 38BU833 and 38BU19 .. 77
Figure 49. Selected Savannah Sherds from the Lewis Mound Site 78
Figure 50. Comparison of the Frequency of Savannah Ceramic Types on 9BN39, 9CH8, and 9CH19 .. 79
Figure 51. Irene Complicated Stamped Sherd from Test Unit 3 on 9BN39 80
Figure 52. Unidentified Sherds From 9BN39 .. 80
Figure 53. Flaked Lithics Per Square Meter in Test Units on Site 9BN39 81
Figure 54. Selected Lithics from the Lewis Mound Site ... 83
Figure 55. De Bry (1591) Engraving of Burial Ceremony of the Timucua 85
Figure 56. Selected Historic Artifacts from 9BN39 .. 87
Figure 57. Number of Sherds Per 100 Years for Phases Identified on Site 9BN39 90
Figure 58. Portion of the 1780 DesBarres Map Showing Houses in the Area of the Lewis Mound Site .. 93
Figure 59. Spatial Concentrations of Constituent Components on the Lewis Mound Site as Evidenced by Artifact Distribution Data 96
Figure 60. Map of Site 9BN133 .. 98
Figure 61. Selected Artifacts from Site 9BN133 .. 101
Figure 62. Recording Site 9BN133 .. 102
Figure 63. Late Archaic Stemmed PP/K from ST 2 on 9BN135 105
Figure 64. Distribution of Late Archaic Components in the Coastal Plain and Coastal Zone of Georgia .. 108
Figure 65. Distribution of Early Woodland Components in the Coastal Plain and Coastal Zone of Georgia .. 109
Figure 66. Distribution of Deptford Components in the Coastal Plain and Coastal Zone of Georgia .. 110
Figure 67. Distribution of Wilmington Components in the Coastal Plain and Coastal Zone of Georgia .. 111
Figure 68. Distribution of Saint Catherines Components in the Coastal Plain and Coastal Zone of Georgia .. 112
Figure 69. Distribution of Savannah Components in the Coastal Plain and Coastal Zone of Georgia .. 113
Figure 70. Distribution of Irene Components in the Coastal Plain and Coastal Zone of Georgia .. 114
Figure 71. Distribution of Eighteenth Century Historic Components in the Coastal Plain and Coastal Zone of Georgia 115
Figure 72. Savannah Components Identified on Fort Stewart 118
List of Tables

Table 1. Management Information for Sites in the Project Area. ii
Table 2. Prehistoric Cultural Sequence in the Project Area. 8
Table 3. Chronology of European-Related Disruptions of Coastal Societies. 17
Table 4. Pottery Totals for the Lewis Mound Site. ... 68
Table 5. Flaked Stone Totals for the Lewis Mound Site. 82
Table 6. Faunal Analysis of Bone from Shovel Test N480 E520 on Site 9BN39. 88
Table 7. Components Recognized on the Lewis Mound Site. 89
Table 8. Shovel Test Data for Site 9BN133. .. 99
Table 9. Shovel Test Data for Site 9BN134. ... 104
Table 10. Shovel Test Data for Site 9BN135. .. 106
CHAPTER 1
Introduction and Background

The LAMAR Institute conducted an archaeological testing and damage assessment of the Lewis Mound and Village site (9BN39) on the eastern margin of Fort Stewart Military Reservation in Bryan County, Georgia (Figures 1 and 2). The project also included an intensive cultural resources survey of 100 acres surrounding the Lewis Mound site. The work was conducted for the Environmental and Natural Resources Division of the Department of Public Works, and was funded by a grant from the Department of Defense Legacy Program.

The survey and testing are unlike typical compliance projects in that they are not precipitated by any proposed development or planned change in land use. The project does, however, help fulfill Fort Stewart’s responsibilities under Executive Order 11593, which was incorporated into a 1980 amendment to the National Historic Preservation Act of 1966 (Public Law 89-665). Subsection 2 (a) of the order requires Federal agencies to locate, inventory and nominate to the National Register all eligible cultural resources under their jurisdiction or control. Personnel of the United States Army are directed to comply with Executive Order 11593 according to Army Regulation 420-40.

Fieldwork was conducted in December 1995 and early January 1996. Archaeological testing of the Lewis Mound and Village site (9BN39) included detailed topographic mapping, intensive shovel testing, and the excavation of a series of test pits. The results of the testing demonstrate that site 9BN39 is capable of producing important information on Native American prehistory, and should be considered eligible to the National Register of Historic Places. Descriptions of the site and our investigations are presented in Chapter 3. Chapter 4 summarizes the artifact assemblage and components on the Lewis Mound site.

The survey, which relied on 30 m interval shovel tests, resulted in the identification of three previously unreported archaeological sites. All of these are prehistoric artifact scatters. The first, site 9BN133, is recommended potentially eligible for the National Register because the deposits appear to be relatively substantial and well preserved. The other two sites, 9BN134 and 9BN135, are smaller and exhibited far lower artifact density. These two sites are recommended ineligible for the National Register. Descriptions of these sites are presented in Chapter 5. Chapter 6 presents a regional context for the survey and testing data. The final section of the report, Chapter 7, presents eligibility and management recommendations for the four sites in the project area.

The Natural Setting

Fort Stewart Military Reservation lies on the eastern margin of the Atlantic Coastal Plain province (Figure 3). The reservation straddles the line between two major physiographic divisions of the Coastal Plain. The western margin of Fort Stewart falls within the Vidalia Uplands section, which consists of moderately dissected uplands with relief that varies between 100 and 500 feet (Hodler and Schretter 1986:17). This portion of the reservation is located in the area known colloquially as the "Pine Barrens" (Larson 1980; Crook 1986).
Figure 1. Location of the Project Area (map source: USGS 1970).
Figure 3. Location of the Project Area Relative to Physiographic Provinces.
The eastern portion of Fort Stewart, including the Lewis Mound area, falls within the Barrier Island Sequence of the Coastal Plain Province (Hodler and Schretter 1986:17). This area corresponds roughly to what many refer to more generally as the "Coastal Zone" (Larson 1980; Crook 1986). Physiographically, the region consists of a series of six shoreline deposit complexes formed by the advance and retreat of sea levels through time. These deposits run parallel to the present coastline, and decrease in elevation in a step-like progression. Slight to moderate dissection of these planes have led to the development of marshes in many of the poorly drained, low-lying areas. The project area itself lies on the Pamlico formation, a Pleistocene Barrier Island complex (Crook 1986). This is a broad, level lowland broken by a number of bays and inlets (Thomas et al. 1995:50).

Vegetation in the interior Coastal Plain, including both the Pine Barrens and Coastal Zone sections, consists chiefly of mesic pine lowland forests, often referred to as pine flatwoods (Wharton 1978:194-195). The lower elevations are covered by slash pine with a galberry and saw palmetto understory. Longleaf pine are more common on slightly higher elevations. Early travellers in the area almost universally portrayed it as an uninhabited region of "eternal pine woods with very little foliage" or a "vast ocean of [pine] trees, stretching without a break, in every direction, as far as the eye could reach" (Hall 1829, cited in Larson 1970:85-88, 106-108). Broad-brushed descriptions of the region such as this are somewhat misleading, however, as the monotonous stretches of pine are occasionally broken by a diverse array of micro-environments, including hardwood hammocks, extremely xeric upland sand hills, and cypress and cedar bays and swamps.

Vegetation in the survey tract itself exemplifies this diversity. Although the southern portion of the survey area consists of pine flatwoods, vegetation in the area surrounding the Lewis Mound consists mainly of hardwoods. The flora in this area is typical of a hammock, or what Wharton (1978:189-190) refers to as an upland broadleaf evergreen forest. Trees consist primarily of live oak, laurel oak, pignut hickory, American holly, southern magnolia, and spruce pine. Shrubs include wild olive, sparkleberry, witch hazel, red bay, and dwarf paw paw. The native fauna included white tailed deer, black bear, wild turkeys, squirrels, raccoons, opossums, and smaller terrestrial species.

The specific project area is located approximately one kilometer south of the Canoochee River, at a point three kilometers west of its confluence with the Ogeechee. The Canoochee River originates in the Coastal Plain, while the headwaters of the Ogeechee extend into the Piedmont. Both are described as blackwater streams, with the color derived from organic acids leached from the swamps of tributary floodplains (Wharton 1978:27). The frequently inundated floodplains of these streams are dominated by gums and cypress. Blackwater streams typically contain a variety of fish including largemouth bass, spotted sucker, bowfin, bluegill, redbreast, sunfish, and channel catfish. The adjacent swamps are occupied by giant eel salamanders, and lunged fish such as the bowfin. The relatively clear waters of the blackwater rivers and swamps also support the feeding of snakes, turtles, and alligators.

From its confluence with the Canoochee, the Ogeechee River flows southeast, emptying into the Atlantic Ocean approximately 30 km from Fort Stewart (and the project area). Along the way, it is bordered by extensive tidal marsh. Invertebrates, particularly molluscs, could have been obtained easily from marshes and small creeks in this area. Common shellfish consist of oysters, clams, whelks, periwinkles, ribbed muscles, and a variety of crabs and shrimp.
Common fish species are mullet, catfish, and drum. Avifauna include shore and wading birds, pelicans, ospreys, and migratory waterfowl.

Soils in the higher elevations of the survey tract are principally of the Ocilla series, which are relatively deep, well drained loamy sands above sandy clay loam (Figure 4) (Wilkes et al. 1974:50). The USDA Soil Conservation Service rates this series as one that is "well suited" for grasses and legumes and "suited" for grain and seed crops, ratings which are better than most of the other series in Bryan and Chatham Counties (Wilkes et al. 1974:60). The Ocilla complex has been described as having a high potential for cultural resources (Miller et al. 1983:231; Thomas et al. 1995:243). Our results support this assertion, with all four sites in the project area located on soils of this type.

Lower elevations in the project area are characterized by Cape Fear soils. This is a very poorly drained type that is common in depressions and drainages (Wilkes et al. 1974:14). Cape Fear soils are unsuitable for habitation or cultivation. Thomas and his colleagues (1995:243) rate this soil type as indeterminate due to a lack of data. The position and characteristics of the type suggest that sites are unlikely, however.

Smaller portions of the survey tract are characterized as Wahee sandy loam, Pooler fine sandy loam, and Craven fine loamy sand. These types are similar to the Ocilla Complex in composition, but are somewhat more poorly drained (Wilkes et al. 1974). With proper drainage, all three can support a variety of crops. Thomas et al. (1995:243) rate these types as having a high probability for containing cultural resources, but no sites were identified on the small areas of these soil associations in our survey tract. Most of the areas characterized by these soil types were low, and in many cases wet.

The climate of the project area is influenced by the proximity of the Atlantic Ocean (Wilkes et al. 1974). Summers are warm, humid, and long, and winters mild and short. An average of 265 days per year are frost free. Approximately 45-50 inches of precipitation falls each year, with almost half of this total occurring from June through September.

The Cultural Setting

A complete rendering of the history of human occupation in the area that is now Fort Stewart requires a consideration of the often disparate cultural histories for both the Coastal Zone and the interior Coastal Plain, or Pine Barrens. The archaeological literature on the former
region is vast, while that for the latter is comparatively far less developed (Schnitt and Wright 1993:12).

The Coastal Plain has been occupied for at least the past 11,000 - 12,000 years. Time, the fluctuating availability of food resources, and the advent of horticulture transformed the early band-level societies into the tribal and chiefdom-level societies encountered by Europeans during the sixteenth century. While the earliest inhabitants made use of the Coast, their subsistence patterns focused on terrestrial rather than marsh or aquatic resources. Adaptation to the estuarine ecosystem did not take place until the Late Archaic period (DePratter 1976; Marrinan 1975). Fluctuations in sea levels during the late Pleistocene and Holocene epochs appear to have been major determinants for this delay, since it was not until about 5000 years ago that the sea level stopped its encroachment on the Coastal Plain.

The early prehistoric groups probably lived in mobile bands consisting of 25 - 50 people (Milanich 1971). In the absence of cultivated crops, terrestrial animals such as deer, raccoons, and opossums were hunted; estuarine resources such as mollusks were gathered; fish were netted, trapped in weirs, or caught on hooks and lines. In the fall, great quantities of acorns and hickory nuts were available in the maritime forests.

The introduction of domesticated plant foods, especially maize, resulted in increased sedentism and eventually contributed to an increase in social complexity throughout the Southeast. The only direct evidence for corn agriculture has been found in Mississippian and protohistoric period coastal sites, but the crop may have been introduced by about A.D. 700, during the Late Woodland period (Milanich 1971). The introduction of corn probably had little initial effect on coastal lifeways, although as a dietary supplement it reduced the ever-present threat of famine by reducing the dependence on wild resources. The following sections briefly summarize the four stages of cultural development usually recognized by Southeastern archaeologists. Refer to Table 2 for a summary.

The Paleoindian Period (9500 - 8000 B.C.)

The earliest inhabitants of the Atlantic Coastal Plain were nomadic bands of hunters and gatherers pursuing the last of the Pleistocene megafauna. Paleoindian sites throughout the Southeast are characterized by lanceolate projectile points. The earliest examples, defined as the Clovis type, exhibit a "flute" or channel flake scar at their base. This type is recognized as a hallmark of the Early Paleoindian Period, generally dated to 9500 to 9000 B.C. (Anderson et al. 1990).

With the transition to the Middle Paleoindian Period (9000 to 8500 B.C.) a variety of new projectile point forms appear in the region. Although some of these are fluted, others are not. Diagnostic markers for this period include narrow, waisted varieties, such as the Cumberland, Suwanee, and Simson types (Anderson et al. 1990).

The Late Paleoindian Period (8500 to 8000 B.C.) is marked by the Dalton projectile point type. Dalton points are lanceolate blades with concave bases that are usually well thinned. Bases and lateral edges are often ground.
Table 2. Prehistoric Cultural Sequence in the Project Area.

<table>
<thead>
<tr>
<th>Periods</th>
<th>Phases</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protohistoric</td>
<td>Altamaha</td>
<td>A.D. 1550 - 1700</td>
</tr>
<tr>
<td></td>
<td>Irene</td>
<td>A.D. 1300 - 1550</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Savannah</td>
<td>A.D. 1150 - 1300</td>
</tr>
<tr>
<td></td>
<td>St. Catherines</td>
<td>A.D. 1000 - 1150</td>
</tr>
<tr>
<td>Late Woodland</td>
<td>Wilmington</td>
<td>A.D. 600 - 1000</td>
</tr>
<tr>
<td></td>
<td>Walthour</td>
<td>A.D. 500 - 600</td>
</tr>
<tr>
<td>Middle Woodland</td>
<td>Deptford</td>
<td>400 B.C. - A.D. 500</td>
</tr>
<tr>
<td>Early Woodland</td>
<td>Refuge</td>
<td>1100 - 400 B.C.</td>
</tr>
<tr>
<td>Late Archaic</td>
<td>Stallings/St. Simons</td>
<td>2200 - 1100 B.C.</td>
</tr>
<tr>
<td>Middle Archaic</td>
<td>Morrow Mountain</td>
<td>6000 - 2200 B.C.</td>
</tr>
<tr>
<td>Early Archaic</td>
<td>Kirk</td>
<td>6000 - 5000 B.C.</td>
</tr>
<tr>
<td></td>
<td>Palmer</td>
<td>7000 - 6000 B.C.</td>
</tr>
<tr>
<td></td>
<td>Dalton</td>
<td>8500 - 8000 B.C.</td>
</tr>
<tr>
<td>Paleoindian</td>
<td>Suwanee/Simpson</td>
<td>9000 - 8500 B.C.</td>
</tr>
<tr>
<td></td>
<td>Clovis</td>
<td>9500 - 9000 B.C.</td>
</tr>
</tbody>
</table>

After Anderson (1975); Braley et al. (1986); Caldwell (1971); Coe (1964); DePratter (1991); and Taylor and Smith (1978).
Riverine environments, in particular those associated with the backswamps and levee ridges of the major streams, were favored settlement locations throughout most of the Paleoindian period (Michie 1977; Elliott and Doyon 1981). Anderson (1990) has suggested these larger rivers served as migration corridors during the period of initial settlement in the region. A gradual expansion into the uplands has been noted in portions of northern Georgia (O’Steen et al. 1986).

Paleoindian sites are infrequently found in the coastal sector. Most of those that have been reported consist of isolated projectile points or small, low density lithic scatters. The same is true for much of the Coastal Plain. To a certain extent, the infrequency of Paleoindian artifacts in the region may largely be the result of the lack of intensive survey. However, the paucity of components from the period even in well surveyed areas (e.g. Fish 1976; Sassaman et al. 1990; Kirkland 1994) suggests that occupation of the region was indeed very light. One exception is the Feronia locality along the Big Bend of the Ocmulgee River, where Snow (1977) reports the recovery of numerous Paleoindian artifacts.

Three Paleoindian projectile points have been reported on Fort Stewart (Thomas et al. 1995). The first, a fluted PP/K, was identified in a private collection from site 9BN37. The other two, both Dalton types, were collected by Professional Analysts from sites 9L1276 and 9BN36 (Miller et al. 1982; Thomas et al. 1995). Given the small sample size, characterizations of Paleoindian settlement in the area must await further survey.

The Archaic Period (8000 - 1100 B.C.)

The Archaic period is divided into three segments: Early, Middle, and Late. With the extinction of the Pleistocene megafauna, human subsistence strategies diversified to focus more on smaller terrestrial forms, especially white-tailed deer, and a variety of gathered plant and animal foods. Diagnostic artifacts from the Early Archaic period (8,000 - 6000 B.P.) reflect this change, with a transition to smaller, corner notched projectile point types (such as the Bolen, Palmer, and Kirk types) and unifacial tools (Bullen 1975; Coe 1964).

Early Archaic artifacts occur with much greater regularity in the coastal area and interior Coastal Plain than those from the preceding period (Blanton 1979:46; Fish 1976; Garrow et al. 1984; Hally et al. 1975; Kirkland 1994; Snow 1977). However, as Elliott and Sassaman (1995:125-135) report, relative to most of the Coastal Plain, few sites from the period have been recorded in the Barrier Island sequence. Moreover, many of the sites that have been recorded occur as isolated finds or on small lithic scatters. This probably reflects a continued high degree of residential mobility. Although the use of the uplands may have continued to expand, riverine environments were still probably the preferred settlement locations throughout most of the year (Anderson and Hanson 1988).

Seven sites on Fort Stewart have produced Early Archaic diagnostic artifacts (Thomas et al. 1995). These include Bolen, Kirk, and Palmer projectile point types. As additional survey is conducted on the installation, the total number of Early Archaic components will no doubt rise considerably.

The Middle Archaic period (6000 - 2200 B.C.) is ushered in by new tool types, including bannerstones and ground stone celts, as well as Stanly, Morrow Mountain, and Guilford projectile points. The period largely corresponds to an interval of warmer conditions commonly
referred to as the Hypsithermal. In the Piedmont, where Middle Archaic sites are more common, an increase in the use of locally occurring lithics has been noted. This has often been cited as evidence that territorial ranges became more constricted, although the fact that Middle Archaic sites in the region are usually small and contain redundant artifact assemblages implies that people continued to be very nomadic (Blanton and Sassaman 1989). The prevailing choice of quartz for the manufacture of Morrow Mountain points has been explained on both technofunctional (Blanton and Sassaman 1989) and socio-cultural (Benson 1995) grounds.

Sites dating to the Middle Archaic are infrequently reported from the Coastal Plain (Blanton 1979:47; DePratter 1978; Kirkland 1994:55). This is particularly true of the Barrier Island sequence (Elliott and Sassaman 1995:133). It appears that the Piedmont and Sandhills, areas which may have been richer in deer, hickory nuts, and acorns—were more intensively utilized (Benson 1995; House and Ballenger 1976). While there have been few Middle Archaic period sites reported along the coast, rising sea levels may have inundated many sites within this region.

Only one Middle Archaic component has been identified on Fort Stewart to date (Thomas et al. 1995). Although this number may also increase as additional survey is conducted on the installation, the paucity of Middle Archaic diagnostics on several survey tracts in surrounding areas (e.g., Garrow et al. 1984; Hally et al. 1975) suggests that this total may never rise appreciably.

Two major developments took place during the Late Archaic period (2200 - 1100 B.C.): shellfish became an important item in the diet, possibly due to the sea level stabilizing; and the first ceramic vessels were produced. Both of these innovations suggest an increasing degree of sedentism and, presumably, social complexity. The earliest pottery was fiber-tempered, i.e., Spanish moss or other vegetable fiber was added to the wet clay to facilitate the molding of the vessel. When fired, the organic material burned out, leaving the pottery very porous and with a vermiculated surface. In the Savannah River basin these wares date to about 2500 B.C. (Stoltman 1966), but along the coast the dates are somewhat later, ranging from about 2250 - 1750 B.C. (Marrinan 1975). Plain, incised, and punctated wares were produced (Claffin 1931; Waring 1968). In contrast with fiber tempered assemblages from the interior, however, those from the coast are typically composed chiefly of plain sherds (Sassaman et al. 1995) (but see DePratter 1979b for an exception). Fiber tempered sherds on the coast fall in the Saint Simons series (DePratter 1979a, 1991; Waring 1968), while those further into the interior are usually described as Stallings Island.

On the Georgia coast, Late Archaic period sites exhibit considerable diversity in type and location, ranging from the distinctive ring-like shell middens (such as those on Sapelo and Skidaway Islands), to the less formal linear middens fronting the estuaries, as well as non-shell sites located in xeric hammocks. Late Archaic period settlement in the interior is not well documented, but limited surveys in the region suggest that components from the period are common (Blanton 1979:49; Elliott and Sassaman 1995; Garrow et al. 1984; Hally et al. 1975; Kirkland 1994:57; Snow 1977).

Fifteen Late Archaic components have been identified on Fort Stewart to date (Thomas et al. 1995). Diagnostic artifacts from the period include Saint Simons series ceramics and Savannah River hafted bifaces, a broad stemmed type defined by Coe (1964). These components
have been identified in a variety of environments on the reservation, including both riverine and "upland" locations (Miller et al. 1983).

The Woodland Period (1100 B.C. - A.D. 1000)

Ceramic technology became more refined during the Woodland period. Vessels were constructed by coiling rather than the slab molding method employed during the Late Archaic period. Fiber tempering was gradually abandoned as the need for more efficient ceramic technology developed. Vessel sizes increased and the pot walls became thinner. Decorative motifs of the Early Woodland (1100 - 400 B.C.) pottery are reminiscent of their earlier counterparts, and punctated, incised, simple stamped, and dentate stamped decorations are common on a sand-tempered paste. Pottery from the period is defined as that of the Refuge series, named for a site in the Savannah National Wildlife Refuge (Waring 1968; Trinkley 1980; Lepionka et al. 1983).

Settlement during the Refuge phases of the Early Woodland period is poorly understood. DePratter (1978:72) noted a decrease in the occupation of Skidaway Island during the period, possibly due to a lowering in sea level. The few components that DePratter identified were located in what is now marsh, but which was probably the shoreline during the Early Woodland period. A more recent survey on Skidaway Island identified a preference for site locations in the interior of the Island (Pluckhahn 1995a). This would mesh with Marrinan's (1975) suggestion that Refuge phase populations focused more on terrestrial and fresh water resources.

Few Refuge phase sites have been identified in the interior of the Coastal Zone. Garrow et al. (1984) reported only 9 Refuge components, Kirkland (1994) identified two in Coffee County and Snow (1977) found just one in the Big Bend region of the Ocmulgee River Valley. Hally and his colleagues (1975) did not report any Refuge components in the Big Mortar-Snuffbox Watershed, but this is largely because Refuge was not recognized as a component type. The difficulty in distinguishing Refuge and Deptford components may result in artificially low component totals for the period.

Only a few Refuge sites have been identified on Fort Stewart (Thomas et al. 1995). Whether this reflects a genuinely low level of occupation or, alternatively, problems with survey bias or ceramic recognition must await further survey and excavation.

By about 400 B.C., pottery with a check stamped design was added to the Coastal ceramics repertoire. This change heralds the arrival of the Deptford phases of the Middle Woodland period, which persisted for the next 900 years (400 B.C. - A.D. 500). Based on the addition or decline of the popularity of particular decorative styles, Deptford was originally subdivided into three phases (Caldwell 1971). More recently, DePratter has simplified this division, separating the series into Deptford I and II phases. Interestingly, Brewton Hill (or Deptford Complicated Stamped) ceramics, the coastal equivalent of the Swift Creek type, are typically only minor additions to the Middle Woodland assemblages from the northern Georgia coast. This contrasts with collections from further into the interior of the Coastal Plain, where Swift Creek ceramics predominate (Blanton 1979:54; Kirkland 1994:67; Snow 1977).

Deptford ceramics are found across much of the Coastal Plain, stretching up from the Florida panhandle, across Georgia, and northward up the coast as far as North Carolina (Milanich 1973). Deptford social organization probably operated at the tribal level with
individual groups perhaps consisting of as few as 25 - 50 people. Along the coast the diet continued to be based on estuarine resources, but wild and domesticated plant foods probably played an increasing role in the diet as time progressed (Milanich 1971). Milanich (1971) considered Deptford populations to be based on the Coast, utilizing the interior only on a seasonal basis. Anderson (1975), on the other hand, asserts that the primary habitation may have been inland, and that the Coast was occupied for seasonal foraging and fishing.

Tentative support for Anderson's hypothesis can be found in the results of several surveys in the interior. For example, Hally and his colleagues (1975:120) identified a number of Deptford components in the interior sections of Long and McIntosh Counties. Still larger numbers of Deptford components have been identified on several surveys further into the interior (Blanton 1979: 51; Snow 1977; Kirkland 1994:67).

Likewise, Deptford components also appear to be relatively common on Fort Stewart. Despite the lack of intensive survey on the reservation, 21 components from the phase have been identified to date (Thomas et al. 1995). Unfortunately, since most of these are known only from disturbed surface contexts, it is difficult to evaluate the permanence of occupation. The sheer number of components, however, suggests relatively intensive use of the area.

The Late Woodland period (A.D. 500 - 1000) is defined by the Wilmington phase along the northern Georgia coast. Check-stamped pottery lost favor to cord-marked vessels by about A.D. 600. Wilmington phase pottery can be distinguished from other types by the presence of many large fragments of burned clay or crushed sherds in the paste. DePratter (1991) separates the Wilmington period into two phases. The first, termed the Walthour phase, is marked by the occurrence of Walthour Check and Simple Stamped pottery, as well as Wilmington Plain and Cord Marked ceramics. The later Wilmington phase includes Wilmington Plain, Cord Marked, Brushed, and Fabric Marked varieties.

At one time Wilmington was regarded as an intrusive culture from the north (Waring 1968; Caldwell 1958), but it is now seen as an outgrowth from Deptford ancestry. Milanich (1971) suggests that maize had been introduced to the coast at some point during the Wilmington phase. The distribution of Wilmington components on soil types that would be more amenable to horticulture may support this hypothesis (DePratter 1978; Pluckhahn 1995a).

Only a small number of Wilmington components have been identified on Fort Stewart to date (Thomas et al. 1995). However, a Wilmington component is present on the Lewis Mound site, and it seems likely that additional settlements from the period are present in the surrounding areas.

The Mississippian Period

During the late prehistoric period the cultures of the Southeast experienced a rapid population growth as a result of shifting subsistence strategies and socio-political organization. This period, termed the Mississippian, witnessed the fluorescence of native societies in the Southeast.

These changes were slow on the Georgia coast, however, and the initial portion of the period is similar to the Late Woodland. The relatively brief St. Catherines phase (A.D. 1000 - 1200) marks the transition to the Mississippian period in the area. This phase was defined by
archaeologists from the University of Georgia following excavations on St. Catherines Island (Caldwell 1971). As might be expected, ceramics of the phase appear to be transitional between the earlier Wilmington wares and the succeeding Savannah phase pottery. Unlike Wilmington, the cord marking was more neatly applied, the impressions were applied in a criss-crossed rather than parallel pattern, and the cord impressions were smaller (DePratter 1991). Like Wilmington pottery, the clay still contained crushed sherds or burned clay, but the particles were smaller. Minority wares included burnished plain and net marked pottery (Caldwell 1971; DePratter 1991).

It should be noted that the Saint Catherines phase is not accepted by Crook (1986). He argues that Saint Catherines and Savannah wares are contemporaneous, and his chronological framework has Savannah succeeding Wilmington at around 900 A.D.

Nevertheless, the Saint Catherines phase is recognized by most researchers in the region, and well defined components from the period have been identified on a few sites (e.g., Brooks et al. 1982; Trinkley et al. 1992). Sites from the period appear to be fairly common on the barrier islands of the northern Georgia coast (DePratter 1978:73; Pluckhahn 1995a), but are virtually unknown in the interior (Fish 1976; Hally et al. 1975). This may, at least in part, be explained by the difficulty in differentiating Saint Catherines ceramics from those of the Wilmington series on the basis of a small collection of sherds. It is clear, however, that both ceramic types do not extend into the interior as far as the Ocmulgee Big Bend region (Snow 1977). There, and in adjacent portions of the Coastal Plain to the south, the Late Woodland and Early Mississippian periods are marked by sand and grit tempered cordmarked sherds of the Ocmulgee series (Blanton 1979:57; Kirkland 1994:71; Snow 1977; Stephenson 1990).

Prior to this study, no Saint Catherines period components had been definitively identified on Fort Stewart. Now, such components are recognized on three sites. This includes a fairly substantial occupation of the Lewis Mound site.

Many Mississippi period cultures were ranked societies, and it is postulated that the coastal Savannah culture (A.D. 1150 - 1300) operated at the chiefdom level (Pearson 1977, 1979; Crook 1978). This hypothesis is largely based on the appearance of a new site type--large, nucleated villages--during the Savannah phase. For the first time there was a hierarchical arrangement of site types. Nucleated, palisaded villages dominated the settlement hierarchy in inland provinces, as well as along the coast and the lower reaches of the Savannah River. Examples include the Rucker's Bottom site on the upper Savannah River (Anderson and Schuldenrein 1985), the Irene site on Georgia Ports Authority property (Caldwell and McCann 1941), the Kenan Field site on Sapelo Island (Crook 1978), and probably the Indian Hill site on St. Helena Island, South Carolina (Lepionka et al. 1983).

Savannah phase ceramics were still decorated with cord marking, but plain, check stamped, and complicated stamped wares were also produced. The reintroduction of check stamped wares is the hallmark of late Savannah (Savannah II phase), which began about A.D. 1300 (DePratter 1991).

There appears to have been an increase in the occupation of the immediate interior of the Coastal Plain during the Savannah period (Fish 1976; Pluckhahn 1995b). Hally and his colleagues (1975:120) noted that, when the length of the prehistoric periods were accounted for,
Savannah components were more frequent than those of any other prehistoric period. Moving further into the Coastal Plain, Snow (1977) has observed that Savannah period components are well represented in the Ocmulgee Big Bend area. In addition, two Savannah platform mounds have been identified in that region, at the Sandy Hammock site (Stephenson et al. 1990) and at the Sawyer site (Mark Williams, personal communication 1996). Both Kirkland (1994:76) and Blanton (1979:59) report relatively large numbers of Savannah components in the Satilla River Basin to the south of the Big Bend.

Savannah components are common on portions of Fort Stewart (Miller et al. 1982; Pluckhabn 1995b; Thomas et al. 1995), and were noted on each of the four sites identified in the project area. The large numbers of sites from this period, coupled with the presence of several that appear to have been occupied fairly intensively, suggests that a population was based in the area for long intervals, and perhaps on a permanent basis.

The Irene phase directly follows the Savannah phase on the northern Georgia coast, dating from about A.D. 1300 until European contact. There is disagreement regarding the temporal placement of the Irene phase. Larson (1955, 1957) believes that the phase began just prior to Spanish contact. Most archaeologists view the phase as having more time depth (DePratter 1979a; Cook 1980).

The temporal placement of the Irene phase is one of the most sensitive issues concerning Georgia coastal archaeology. While Irene sites are by no means rare along the coast, until very recently there were no radiocarbon dates. Archaeologists from the University of Georgia favored a fully prehistoric beginning date for the period, ca. A.D. 1300 (Caldwell 1971; DePratter 1978), while University of Florida archaeologists argued that the culture was of historic origin (Martinez 1975; Milanich 1977; Crook 1978). Two radiocarbon dates were obtained from an Irene phase site on Harris Neck National Wildlife Refuge, ranging from about A.D. 1330 - 1490 (Braley et al. 1986).

Ceramic forms changed during the Irene phase. The long lasting tradition of cord marking was abandoned for complicated stamping, and incised designs became popular on cazuela or carinated bowls (bowls with incurving rim forms) and small jars. The ceramics are very similar to those of the Lamar and Pee Dee cultures of the Georgia and South Carolina Piedmont, which, based on radiocarbon dates, range between ca. A.D. 1300 - 1580, (Smith n.d.; Williams 1983; Hally 1984).

Although a few Irene components have been identified on Fort Stewart, there is clearly a decrease from the levels of the preceding Savannah period (Miller et al. 1983; Pluckhabn 1995b; Thomas et al. 1995). This no doubt reflects an increasing dependence on horticulture, and a resulting preference for more fertile areas along larger streams. However, Late Mississippian settlement was also influenced largely by social and political forces, and the abandonment area may be due to other factors, such as enmity between competing chiefdoms.
The Protohistoric Period

When the first European explorers arrived on the northern Georgia coast they encountered the Guale Indians, who occupied the area between the Altamaha River and Ossabaw Island. Three groups of settlements may have comprised three chiefdoms within the region (Jones 1978). During the sixteenth and early seventeenth centuries the chiefdoms may have been controlled by dual principal towns. The towns of Asao and Talaxe controlled the estuaries of the lower Altamaha River, Tolomato and Guale presided over subsidiary settlements in the Sapelo River to St. Catherines Island area, and the dual towns of Espogache and Tupiqui commanded the settlements adjacent to the estuaries of the South Newport and North Newport Rivers (Jones 1978).

The archaeological complex dating to the protohistoric period (ca. A.D. 1550 - 1680) shows the direct outgrowth from the prehistoric Irene culture. Altamaha/Southerland Bluff ceramics are very similar to the earlier Irene wares, but the design elements of the complicated stamping became simplified, and fine-line incising became more widespread (Cook 1980; Snow 1977; Thomas 1993). Curvilinear complicated stamping was replaced by line-block stamping, check stamping returned, and some vessels were painted with red slip. Toward the latter part of the period European vessel forms were copied (Larson 1957; Smith 1948; Otto and Lewis 1974).

In 1526, Lucas Vasquez Ayllon established a short-lived colony, San Miguel del Gualdape, on the lower Atlantic coast, possibly in the Port Royal, South Carolina, vicinity or on the northern Georgia coast near St. Catherines or Sapelo Islands. The Spaniards undoubtedly interacted with the coastal inhabitants, either the Guale or the Orista, closely related groups. Although the colony was unsuccessful, it may have had a severe effect on the Indians, for in 1540 a member of the DeSoto expedition reported that an epidemic had killed many of the inhabitants of Cofitachequi, a province of the lower South Carolina Piedmont (Elvas 1907). This epidemic may have been the result of diseases introduced by Ayllon's settlement, although the evidence for this is equivocal (DePratter 1989:147-148).

The first concerted effort to settle the coast occurred in the last half of the sixteenth century. French fortifications and settlements were established in 1562 by Jean Ribault, both to the north and south of the Georgia coast. Charles Forte was constructed at Port Royal just north of the Savannah River, and Fort Caroline was established at the mouth of the St. Johns River, Florida. The French ethnohistoric accounts of the Guale and Timucuan Indians are the most detailed of the early historic period (Laudonniere 1975). Both settlements were destroyed by the Spanish in 1565.

The Spaniards were led by Pedro Menendez de Aviles, who, after destroying the French forces, established the fortified towns of Santa Elena at Port Royal, and St. Augustine, Florida. Spain had originally intended to develop a farm and ranch system in the Southeast, using Indian labor, but in the face of continual hostility these plans were soon abandoned (Lyon 1981). Consequently, the Spanish settlements were primarily military outposts designed to guard the northern part of the Caribbean against threats to Spanish ships traveling to and from Central and South America.

While the province of Guale could not supply the Spaniards with precious metals or other valuable natural resources, the value of the Georgia coast as a producer and storehouse of food was readily apparent (Ross 1926). In order to placate the coastal population and guarantee a
dependable supply of maize, Menendez established the mission system along the northern Georgia coast. The first Jesuits arrived in 1568, only to abandon their efforts in 1570 (Jones 1978).

Franciscan missionaries arrived in 1575, but, like their Jesuit predecessors, their efforts were unrewarded. In 1595, six more Franciscans tried their hand at missionizing the Guale and for several years they made some progress. However, five of the six Franciscans were murdered during the Juanillo Revolt in 1597, which erupted after one of the missionaries forbade a young heir (Juanillo) to the chiefdom of Tolomato from taking more than one wife. The surviving missionary was held prisoner at a village some distance up the Altamaha River (Lanning 1935). The rebellion found support among Guale who preferred trading with the French, rather than the Spanish (Bushnell 1994).

From St. Augustine, Governor Mendez de Canzo decreed that any Indian that could be captured would be enslaved. He also sent a punitive expedition up the Georgia coast. Nineteen towns were burned, stores of maize were destroyed, and a number of Indians were killed. By 1603 the Guale sued for peace and agreed to prosecute the perpetrators of the revolt. The province of Guale was finally pacified after nearly 30 years of intermittent hostilities (Lanning 1935).

The Guale population was gradually persuaded to settle near the missions on the barrier islands during the early 1600s. In spite of population reductions, the mission system resulted in the acculturation of many Indian societies. By the late seventeenth century, however, harassment by English colonists and Indian slave raiders caused the mission villages to begin moving south toward the protection of St. Augustine (Worth 1995:19-20). The mission village of Tolomato had moved to St. Augustine by 1658 (Otto and Lewis 1974), and, in 1670 Charles Towne and the colony of South Carolina bordered Guale to the north. Only six villages were reported for the coast north of Cumberland Island by 1675.

By 1703 the English were strong enough to raid the mission chain stretching across north Florida, and lay siege to St. Augustine. The Spaniards, allied with French forces, retaliated in 1707, in an unsuccessful attack on Charles Towne (Ivers 1972).

Throughout the period of initial European settlement, Guale material culture (in this instance, ceramics) apparently did not undergo radical change. Seventeenth and early eighteenth century Guale ceramics from St. Augustine, Florida (the San Marcos series), are very similar to the Irene ceramics found along the north Georgia coast. That traditional ceramic technology persisted in spite of increased contact with European cultures in no way suggests that the contact was minimal. As Table 3 outlines, there were extreme disruptions in the native culture, and epidemics and warfare became common.

The English colonization effort differed from Spain's. South Carolina was intended to provide the British empire with raw materials. Naval stores, livestock, and food crops were exported to the West Indies in exchange for rum, sugar, and slaves. Indian, as well as African slaves were forced to work on the newly cleared plantations. By 1708, South Carolina claimed more than 1000 Indian slaves, almost 15 percent of the colony's population (TePaske 1971).

The Indians' grievances against the English erupted into violence in the Yamasee War of 1715 - 1717. Known to the Spanish as the Guale, the Yamasee abandoned the Spanish missions
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1526</td>
<td>First colonizing effort by Spaniards, Lucas Vasquez de Ayllon attempts settlement on northern Georgia coast.</td>
</tr>
<tr>
<td>1562</td>
<td>French establish Charles Forte at Port Royal, South Carolina; Fort Caroline at mouth of St. Johns River, Florida.</td>
</tr>
<tr>
<td>1565</td>
<td>Spaniards oust French, establish Santa Elena at Port Royal; St. Augustine, Florida founded.</td>
</tr>
<tr>
<td>1566</td>
<td>Spanish garrison established at town of Guale.</td>
</tr>
<tr>
<td>1568</td>
<td>First Jesuit missionaries administer to Indians at Santa Elena.</td>
</tr>
<tr>
<td>1569-1570</td>
<td>Epidemic throughout northern Georgia coast.</td>
</tr>
<tr>
<td>1570</td>
<td>Jesuits abandon missions.</td>
</tr>
<tr>
<td>1570-1571</td>
<td>First skirmishes with the Orista and Escamacu at Santa Elena.</td>
</tr>
<tr>
<td>1573</td>
<td>First Franciscan missionaries arrive.</td>
</tr>
<tr>
<td>1575</td>
<td>Cacique of Guale (St. Catherine's Island) baptized.</td>
</tr>
<tr>
<td>1576</td>
<td>Rebellion erupts, centered at Guale, focuses on Santa Elena.</td>
</tr>
<tr>
<td>1577</td>
<td>French ship captured by Indians; 200 of 280 passengers killed.</td>
</tr>
<tr>
<td>1580</td>
<td>2000 Indians besiege Santa Elena.</td>
</tr>
<tr>
<td>1586</td>
<td>Santa Elena abandoned.</td>
</tr>
<tr>
<td>1595</td>
<td>Franciscan missionaries return to northern Georgia coast.</td>
</tr>
<tr>
<td>1595-1596</td>
<td>Spanish attack, burning Guale villages at night.</td>
</tr>
<tr>
<td>1597</td>
<td>The Juanillo Revolt, five of six missionaries murdered.</td>
</tr>
<tr>
<td>1598</td>
<td>Spanish reprisals, villages and food stores burned.</td>
</tr>
<tr>
<td>1603</td>
<td>Spanish Governor Mendez de Canzo visits Guale coast on peace-seeking mission.</td>
</tr>
<tr>
<td>1604</td>
<td>New governor, Pedro de Ibarra, visits Guale towns.</td>
</tr>
<tr>
<td>1607</td>
<td>Bishop of Cuba, Juan de las Cabezas de Altamirano, visits coast.</td>
</tr>
<tr>
<td>1609</td>
<td>Indians urged to move to barrier islands to be close to the missions.</td>
</tr>
<tr>
<td>1649-1650</td>
<td>Epidemic.</td>
</tr>
<tr>
<td>1657</td>
<td>Epidemic.</td>
</tr>
<tr>
<td>1658-1659</td>
<td>Guale mission of Tolomato moves south to St. Augustine.</td>
</tr>
<tr>
<td>1659</td>
<td>Measles epidemic kills more than 10,000 throughout the Spanish controlled Southeast.</td>
</tr>
<tr>
<td>1670</td>
<td>English establish Charles Towne and colony of South Carolina.</td>
</tr>
<tr>
<td>1683</td>
<td>Spanish plan to move several towns to St. Augustine results in rebellion, population dispersal.</td>
</tr>
<tr>
<td>1703-1704</td>
<td>South Carolinians attack missions of northern Florida, lay siege to St. Augustine.</td>
</tr>
<tr>
<td>1715-1717</td>
<td>Yamasee War.</td>
</tr>
<tr>
<td>1733</td>
<td>Colony of Georgia founded.</td>
</tr>
</tbody>
</table>

Based on Braley et al. (1986); Jones (1978); Ross (1926); Lanning (1935).
about 1680 and settled on the South Carolina frontier. The Yamasee were joined by Creeks, Catawbas and other tribes in an all out attempt to destroy the South Carolina colony. More than 400 colonists and an untold number of Indians died in the fighting. English retribution was severe, and when the war concluded, much of the interior of Georgia and South Carolina was left abandoned. The surviving Indians migrated westward en masse, settling in the lower Chattahoochee River valley of western Georgia.

Much of the Coastal Plain was abandoned following the Yamasee War. However, there were a few scattered settlements near Fort Stewart throughout the seventeenth and eighteenth centuries. One of these, Ogeechee Old Town, was probably located upstream from the reservation in southern Jefferson County (Braley 1995:43). Other small settlements were located north of Statesboro and along the Altamaha.

The Historic Period

Georgia was the last North American proprietary colony organized by England. In 1730 the Governor of South Carolina proposed to the crown that the frontier be pushed across the Savannah River. The colony of Georgia was founded in 1733, and English settlement rapidly pushed southward toward Spanish controlled Florida, and westward into the interior. Three motives for establishing the colony are frequently cited: there was a need to create a series of military outposts as a buffer between Florida and the Carolinas; the warm climate would be favorable for the growth of cash crops such as silk, thus strengthening the British mercantile system; and it would allow England and other Protestant areas in Europe to relieve themselves of the burden of the unemployed and other "unfortunate poor" (Coleman 1960:2).

The first objective was accomplished with the establishment of Fort Argyle on the western bank of the Ogeechee River, approximately 3 miles north of the project area (Braley et al. 1985; Ivers 1974). Other small, fortified outposts were established at Hampstead and Highgate (southwest of Savannah), and at Thunderbolt, Abercorn, and Tybee and Skidaway Islands. Fort Argyle was occupied intermittently throughout the eighteenth century, but saw little military action. By the time of the American Revolution, the fort had outlived its usefulness as a defensive position, and was abandoned. However, its location continued to serve as a local landmark for some time to come.

In keeping with the philanthropic ideals of its founders, at first black slavery was prohibited in the new colony (although indentured servitude was permitted). The establishment of the plantation system was seen to be counteractive to effective colonization, since the large landholdings would tend to disperse the populace rather than concentrate it around defensive strongholds. Also, as the colonists were primarily small businessmen, farmers, craftsmen, and laborers, and land grants were restricted to small plots, they would not have been able to compete with plantation holders in the production of cash crops (Coleman 1976:36-54).

Around the middle of the eighteenth century, however, a number of changes took place in the administration of the colony. First, by the middle of the eighteenth century it had become evident that the philanthropic experiment was largely a failure, and slavery was legalized in 1750. Second, the tenure of land in Georgia was changed to fee simple ownership, so that land grants were "absolute inheritances" that were no longer dependent upon occupation or improvement, and which could be passed on to heirs (Spalding 1984:66-67). Finally, the ceiling on the number of acres an individual could own was also lifted. Historian Phinizy Spalding (1984:67) has noted that, with the repeal of these restrictions, "the evolution of another southern
A plantation economy quickly developed. Rice and indigo became major cash crops and much of the marshland bordering Savannah was converted into rice fields.

The eastern margin of Fort Stewart, including the Lewis Mound area, appears to have been part of the Barbecue Creek community, perhaps the oldest intensively settled region on the reservation. Settlement of the area by Americans of European and African descent began shortly after Georgia became a royal colony in 1750 (Miller et al. 1983:95). Most of these first settlers were people moving west from Savannah or Vernonburgh in search of land for timber or cattle. Perhaps the earliest reference to the area dates to 1752, when John Mathews reported that he "had made improvements in cultivating a Piece of land at a Place known by the name of Barbecue Branch" (Miller et al. 1983:96). Mathews was officially granted the property in 1759 (Hemperly 1972:46).

The exact location of Barbecue Creek is not known; the name does not appear on any historic map sources. Previous researchers have noted that the creek is reported to have flowed into the Canoochee River from the south, not far from the confluence of the Canoochee and Ogeechee Rivers (Miller et al. 1983:95). At this point, the main course of the Canoochee meanders broadly to form a number of large loops. However, a small secondary watercourse flows relatively straight to the east, connecting two of the meanders. Miller and his colleagues (1983:95) suggest that this smaller stream could be Barbecue Creek.

While this suggestion is quite plausible, the amount of land that was reportedly granted on Barbecue Creek suggests that the waterway must have been longer than the small stream identified by Professional Analysts (Miller et al. 1983:96). An alternative possibility is that the name Barbecue Creek was used to describe a small creek on the western margin of the project area that flows almost due north into the Canoochee. Although this drainage is swampy in areas to the south, it gradually changes to a well-defined, flowing creek as it approaches its confluence with the Canoochee. Some corroboration of this interpretation is provided by the Des Barres map (1780) which documents this creek and a number of nearby settlements. The secondary stream identified by Miller and his colleagues (1983) is not mapped.

In any case, it is quite clear that the project area includes portions of the cluster of settlements known as Barbecue Creek. In addition to Mathews, other early settlers in the area included Robert Houston, who was granted a 100 acre tract in 1760, and David Dicks, who received the deed to a 500 acre parcel in 1756 (Hemperly 1972:21, 32; Miller et al. 1983:96). William LeConte received a grant for 350 acres in the area in 1764 (Hemperly 1972:40), but arrived to find that the land was composed chiefly of swampy ground, with "a great scarcity of Timber thereon for fencing and other Plantation Uses" (Miller et al. 1983:98). He asked for and received the grant to 400 adjoining acres.

Although the survey plats for many of Georgia's crown grants were destroyed, a few from the Barbecue Creek area have survived (Figures 4-8). Although it is virtually impossible to situate these precisely on modern maps, it is possible to provide some conjectural locations (Figure 9).
Figure 5. Plat Map of William LeConte’s First Grant in the Barbecue Creek Area. Photocopy of the original housed at the Georgia State Department of Archives and History.
Figure 6. Plat Map of William LeConte's Second Grant in the Barbecue Creek Area. Photocopy of the original housed at the Georgia State Department of Archives and History.
Figure 7. Plat Map of the Tract Surveyed for William Wainwright. Photocopy of the original housed at the Georgia State Department of Archives and History.
Figure 9. Plat Map of Tract Granted to Robert Houston. Copy of the original on file at the Georgia State Department of Archives and History.

Figure 10. Conjectural Locations of Land Grants in the Barbecue Creek Area.
The project area itself appears to fall at least partially within the limits of a 250 acre tract that was surveyed for William Wainwright in 1750 (Hemperly 1972:72). The parcel was never granted to Wainwright, however. One source relates that the tract was sold to Robert Kirkwood, and was later acquired by John Jagger (Miller et al. 1983:96). Hemperly's abstract from the deed (1972:72), on the other hand, notes only that Wainwright sold the property to Jagger. In any case, Jagger gave the property to Elizabeth Shillings in 1767 (Hemperly 1972:72; Miller et al. 1983:96). Interestingly, the plat map that was prepared for Wainwright shows that a hickory was used for a witness tree near the southwestern corner of the parcel. This would seem to fall in the general area of the Lewis Mound site, which is in one of the few areas of hardwoods in the vicinity.

Although some of the land in the Barbecue Creek area was likely cleared for agriculture, most was probably used only to provide timber for saw mills or the naval stores industry (Miller et al. 1983:20). Settlement in the area appears to have remained slow throughout most of the colonial era. Other eighteenth century communities on Fort Stewart included the Cross Swamp area (between the Canoochee and Ogeechee Rivers) and the Taylors Creek community (near the confluence of the Canoochee River and Canoochee Creek) (Miller et al. 1983).

During the Revolutionary War, work on the plantations in the coastal area nearly ceased. When the British held Savannah, all patriots' lands were confiscated, and later when the Americans took the town the conditions were reversed. Throughout this period the plantations were subjected to frequent raids and pillages from unscrupulous bands. Cattle and provisions were stolen and in many cases houses and barns were burned. Those who did not guard their slaves carefully lost many of them to the British (Granger 1947).

There were many Royalists in the Savannah area, and the Confiscation Acts of 1778 and 1780 caused considerable changes in land ownership. The planters who had remained loyal to the crown were considered guilty of treason and their lands were confiscated. Prime rice fields were purchased by industrious planters and crop yields soon after the Revolution eclipsed those of the pre-war years. By this time the slave population was more than double that of whites. Rice continued to be the preferred cash crop during the late eighteenth century, but cotton became more important in coastal regions after the invention of the cotton gin in 1793 (Granger 1947).

Subsistence farming, livestock production, timbering, and rice cultivation continued to be the primary economic activities of the project area throughout most of the early and middle nineteenth century. Although there were a few large plantations, the limitations of the soil prevented the development of intensive agriculture in the region (Thomas 1995:159-160).

During the Civil War, Confederate entrenchments circled the city of Savannah. After the infamous "March to the Sea", Federal forces closed in on the city from the northwest, southwest and south. The Federal troops then formed a line from the Savannah River westward and advanced on the Savannah defenders, who occupied well constructed earthworks and artillery positions on the high ground. Fort McAllister, a strong earthen fort controlling the southern approach to the city on the Ogeechee River, was captured on December 15, 1864, making it impossible to defend Savannah. The Confederate army then abandoned their positions and moved across the river into South Carolina. In late December, General Sherman "gave" the city to Abraham Lincoln as a Christmas present.
The area that is now Fort Stewart witnessed very little military action during the Civil War. On their way to Savannah, portions of Sherman's army moved through the area, passing through the community of Eden (later Clyde) to the north of the survey area. They met with little resistance.

Despite the ravages of the war years and the emancipation of the slaves, the plantation system survived (Prunty 1955). However, rice production, which required tremendous labor, nearly ceased. In the interior Coastal Plain areas, where the plantation system was less established, the economy slowly turned to the timber and naval stores industries. Railroad lines were constructed to serve the timber industry. Agriculture continued on a small scale in the project area, sustained by the introduction of commercial fertilizers during the late 1800s. It was not until the invasion of the boll weevil during the early 1920s that cotton production dropped.

Improvements in the methods for gathering turpentine led to a growth in the industry in the early twentieth century. In response to this growth, a number of small communities appeared in the area that would later become Fort Stewart. One such turpentine community, the small town of Roding, developed just to the west of the survey area. A 1906 source describes Roding as a community of 61 persons. A 1920 USGS map shows the community of Roding and Way's Station (later Richmond Hill) (Figure 10). This map labels the road to the south of the project area as "Red Bug Road." Slash marks in the area now formed by Pond 22 indicate that it was, at that time, a cultivated field.

Forest products continued to fuel the economy of the Fort Stewart area until 1940. In that year, an act of Congress led to the establishment of over a dozen military bases, and an initial purchase of 5000 acres led to the creation of Camp Stewart. Troops began arriving later that year, and anti-aircraft training began in 1941 (Thomas et al. 1995:208). After several periods of inactivity, the reservation received permanent status in 1956, and has remained an important training facility to the present time.

Previous Research

There has been nearly a century of archaeological investigations into Georgia's coastal sites. The following section briefly discusses work on prehistoric and historic sites in the region before turning to previous archaeological investigations on Fort Stewart.

The first archaeology on the Georgia coast was conducted by Clarence B. Moore (1897), who investigated a number of mound sites in the region. Moore was primarily interested in locating burial objects, and his methods were crude by today's standards. Many of the mounds Moore investigated can only be vaguely relocated.

During the Depression, the Works Progress Administration (WPA) sponsored large scale archaeological excavations as a means to put the unemployed back to work. Beginning at Macon in 1933, hundreds of people participated in the excavations at the famous Macon Plateau site (Ocmulgee National Monument). One of the outcomes of the work was the first interpretations of the great time depth of Georgia's prehistory. Several stratified sites were excavated at Macon and the basic sequence worked out by archaeologists nearly 60 years ago is still valid.
Figure II. Portion of the 1970 USGS Limerick Quadrangle that Includes the Project Area. Arrow denotes the general location of the Lewis Mound site.
Hoping to repeat this success on the coast, archaeologist Preston Holder arrived in 1936 and began work at St. Simons Island and on the mainland north of Brunswick. But it was the Irene site (9CH1), located on Georgia Ports Authority property on the south side of Pipemakers Creek (canal) that received the most attention.

The Irene site encompassed about six acres, but an unknown portion had been eroded away by the Savannah River. Two mounds were present; a large mound occupied the east central portion of the site, while a burial mound lay immediately west of the first. Clarence B. Moore (1897) excavated portions of both mounds in 1897, concentrating on the burial mound. In 1907 the north side of the large mound was used for fill by the Chatham County Engineering Department for the building of a floodgate at the mouth of Pipemaker's Creek.

WPA excavations at Irene continued for over two years. The two mounds were completely excavated and a large portion of the surrounding village area was examined. The large mound was built in eight stages, and all but the last layer dated to the Savannah phase (ca. A.D. 1200 - 1400). Mound stages 1-7 each had rectangular buildings constructed on the summit. However, during the final stage of mound construction, dating to the early part of the Irene phase (ca. A.D. 1400 - 1450), no buildings were constructed. The village excavations revealed the outline of a large council house 120 ft in diameter, a mortuary, several house outlines, and a variety of palisade-like enclosures. The site is now covered by a portion of the Garden City Terminal.

Other sites in the Savannah area that received the attention of WPA archaeologists were Meldrim (9CH12) on Wilmington Island, Bilbo (9CH4), the Deptford Burial Mound (9CH2A), Budreau (9CH9), the Dotson Mounds (9CH10), the Oemler site (9CH8), the two Walthour sites (9CH11 and 9CH16), four sites at Cedar Grove (9CH13, 9CH17, 9CH18, and 9CH19), and the Deptford site (9CH2) (DePratter 1991:1). The advent of World War II brought the excavations and analysis to a halt, and it was not until the 1970s and 1980s that the material was fully analyzed and reported (DePratter 1991).

Until relatively recently, most of the archeological work on the coast has focused on the excavation of mound sites, largely because they often contain exotic burial goods. Only a handful of shell middens or artifact scatters have been tested or excavated on the Georgia coast. In the past two decades, however, there have been a number of investigations of such sites. Some of the more comprehensive and more thoroughly reported examples include the testing of five prehistoric shell middens on the southern Georgia coast at the King's Bay Naval Station (Smith et al. 1986), Braley's excavation of a shell midden site (9MC41) at Harris Neck (Braley et al. 1986), and the work by Crook (1986) at the Kenan Field and Bourbon Field sites.

Pertinent historic archeological studies on the northern Georgia coast include the survey and testing of Mulberry Grove Plantation by Smith and Honerkamp (1976), and Wood's (1985) excavation of a late Colonial period house site on the western side of Savannah. Elliott (1990) has conducted archeological reconnaissance of nine eighteenth century settlements in Chatham and Effingham Counties, and testing and excavation of the colonial era Salzburger settlement of Ebenezer.
Archaeological investigations further into the interior of the Coastal Plain have been limited. Probably the most intensive study has been Snow's (1977) ongoing research of the Ocmulgee Big Bend Region. Partially overlapping studies have been conducted by Blanton (1979) and Kirkland (1994). Closer, and perhaps more relevant to Fort Stewart are a few cultural resource management surveys conducted by archaeologists with the University of Georgia. These include studies of the Big Mortar and Snuffbox Swamp watershed by Hally and his colleagues (1975) and of the Ebenezer Creek watershed by Fish (1976). In addition, there is also the work by Garrow and Associates (Garrow et al. 1984) on the large transmission line corridor.

Archaeological investigations on Fort Stewart have been limited. The most comprehensive study to date remains an overview of the installation by Professional Analysts (Miller et al. 1983). This study included a reconnaissance level archaeological survey, as well as a detailed historical study of the reservation.

Prior to the present study, only three archaeological testing projects had been completed on Fort Stewart. These included the location and testing of Fort Argyle by Braley and his colleagues (1985), and later, more limited investigations of the same site by Martin et al. (1986). The third archaeological testing (Benson 1991), which was actually conducted outside the boundaries of the reservation, focused on a small prehistoric artifact scatter previously recorded by Kodack (1990).

The few remaining archaeological studies that have been completed on the installation to date consist exclusively of compliance related surveys of small and intermediate sized tracts. These include surveys by Charles and Finch (1981), Criddlebaugh (1984), Gilbert (1992), Jackson et al. (1988), and Lepionka (1979). With the exception of the study of the Brigade Maneuver Area by Jackson et al. (1988), these surveys have located few, if any, sites.
CHAPTER 2
Methods

Literature Review

In order to gather information about previous archaeological investigations, and to locate known sites in and near the project area, the Georgia Archaeological Site File at the University of Georgia in Athens was consulted prior to fieldwork. Site File maps of the survey area, and the region in general, were examined. Previous reports of archaeological surveys on Fort Stewart were also consulted to learn of the type of resources likely to be encountered.

Early aerial photographs dating from 1940s and 1950s, located in the University of Georgia Science Library, were examined to locate historic houses or structures, and to analyze changes in land use that have occurred over the past 50 years. Early topographic and road maps were also consulted for information on historic structures, farmsteads, and land uses.

Field Methods

Survey Phase

Intensive archaeological survey was conducted on a 100 acre tract surrounding the Lewis Mound site. The survey relied on a combination of visual inspection of exposed ground surface and subsurface testing in more densely vegetated areas. Shovel tests measured 30 cm in diameter, and were excavated on transects spaced at 30 meter intervals.

Unlike much of the Coastal Zone, the survey tract contains relatively well defined landforms. Most of the area is occupied by a broad terrace that slopes rather steeply to wetlands or seasonally inundated lowlands. A large portion of this upland area has been destroyed for the creation of Pond 22. To the west of the Lewis Mound site, across a small drainage, is a low, but rather prominent ridge. Transects were oriented with these landforms whenever possible.

A total of 157 off-site shovel tests was excavated in the project area (Figure 12). Higher, better drained portions of the project area, where previous research has demonstrated that cultural resources are more likely to be identified, were shovel tested more intensively than lower elevations. No shovel tests were excavated in areas of standing water.

The excavated fill from shovel tests was sifted through 0.64 cm (0.25 in) wire mesh handscreens. Recovered artifacts were bagged separately by provenience and labelled. When an artifact was discovered in a shovel test, additional shovel tests were excavated to delineate the size of the site, as well as to determine artifact density, depth, and distribution. Each positive shovel test was flagged and excavation continued until there were two negative shovel tests in each of the four directions. Tests were excavated to culturally sterile subsoil.
Figure 12. Map of the Survey Area Showing the Locations of Sites, Off-Site Shovel Tests, and Survey Conditions.
An archaeological site, for the purpose of this survey, is defined by one of these criteria:

1) a shovel test producing at least three artifacts from the same component (e.g. prehistoric lithic/ceramic or historic over fifty years of age);
2) two shovel tests producing at least one artifact from the same component;
3) a surface collection and/or shovel tests which produce five or more related artifacts within a 30 meter area;
4) the presence of historic structural remains such as standing houses, chimney bases, house foundations, graves, quarries, or wells.

Quantities of artifacts less than the above would be recorded as artifact occurrences.

Field site forms with data pertinent to the immediate environment and showing the location of excavated shovel tests, recovered artifacts and features were then completed in the field. The site was mapped on the appropriate USGS topographic quadrangle. Photographs were taken of each site.

Testing Phase
Archaeological testing of the Lewis Mound site commenced with detailed topographic mapping using a transit and measuring tapes. Elevations and grid locations were measured relative to an arbitrary datum point just south of the mound. This point was designated North 500 East 500. For mapping purposes, the ground surface at this location was given an arbitrary elevation of 10 m. The datum was marked with both PVC and metal pipes.

The transit was also used to establish a grid for the placement of shovel tests and test units. The grid on the site was oriented with magnetic north. Additional grid points were established using compasses and measuring tapes.

Shovel tests were excavated at 10 m intervals across the site. These tests were used to delineate the boundaries of the sites, as well as to identify patterns in the distribution of artifacts. Like those that were excavated on the survey, the testing phase shovel tests also measured 30 cm in diameter, and were sifted through 0.64 cm (0.25 in) mesh. These tests were excavated to sterile subsoil. The stratigraphy of each test was recorded, and artifacts were bagged separately by provenience.

Larger test units (2 x 2 m squares and 1 x 2 m trenches) were placed in areas where shovel tests indicated higher artifact density, but were also positioned to investigate a representative sample of the site. These units were excavated in arbitrary 10 cm levels, or in natural levels that conformed to soil horizons. The fill from test pits was sifted through 0.64 cm (0.25 in) mesh. Recovered artifacts were bagged separately by provenience and labelled. Test pits were documented by written narrative, including technical descriptions of stratigraphy and levels, and by mapping and photography.

Features were generally bisected, and one half was removed in order to observe the stain in profile. In the case of features that extended into the wall of a trench, however, the entire feature fill was removed and the profile was recorded as it appeared in the wall of the unit. Depending on the nature of the feature fill, soil samples were sometimes removed for flotation
in the laboratory. Features were documented with narrative descriptions, mapping, and photography.

Laboratory Methods

Artifacts were washed and sorted by laboratory personnel. With the exception of a small quantity of faunal remains, all of the artifacts were analyzed by the author. The faunal sample was analyzed by Charlene Keck, of the Laboratory of Zooarchaeology at the Georgia Museum of Natural History. Artifact analysis procedures included standard, technological, and typological sorting, as described below.

Historic Artifacts

Historic artifacts were grouped into time-sensitive categories representing different materials and means of manufacture, such as cut and wire nails, various colored container or flat glass, and ceramics. Ceramics were identified by their named type, most of which have known date ranges of manufacture.

Prehistoric Ceramics

Prehistoric ceramics were classified by surface treatment and temper. Identification of these attributes allows for the classification of sherds into the coastal ceramic chronology developed principally by Caldwell (Caldwell 1970; Caldwell and McCann 1941; Caldwell and Waring 1939) and more recently refined and described in detail by DePratter (1979a, 1991).
However, as Saffer (1979) has pointed out, there are a number of problems with this chronology. First, these type descriptions do not take into account the great range of variability in ceramic attributes throughout the Coastal Zone. Perhaps more importantly though, there has been a widespread failure to define terminology and use it consistently. What one researcher refers to as "coarse sand" may be labelled "grit" by another.

In the analysis of ceramics from the project area, we have attempted to employ a more objective approach. Because prehistoric pottery forms the bulk of the artifact assemblage from the project area, this requires some elaboration.

Ideally, the temper in Coastal Zone pottery falls into one of four categories: fiber, grog, sand, or grit. Fiber tempered Saint Simons series ceramics, which were produced by the addition of small amounts of vegetable matter (probably Spanish moss) to the clay, can be easily recognized by the irregular impressions left by the fiber particles on the surface of the sherd.

Sherds that are referred to as "grog tempered" contain distinct lumps of fired clay in the paste. In some cases, these clay particles may be ground sherds that were deliberately added as tempering agents. However, it is also possible that the clay source material may not have been as finely ground, and that these lumps are simply incidental inclusions in the paste (Saffer 1979).

Although a few researchers (Saffer 1979; Crook 1986) have questioned whether grog tempering may simply reflect variability in clay sources, rather than an indication of a distinct type, in this analysis grog tempering is used as a distinguishing attribute for pottery of the Wilmington, Walthour, and Saint Catherines series, as defined by DePratter (1979a, 1991). Clay particles smaller than 3 mm are typical of the latter type, while larger clay lumps are more characteristic of the Walthour and Wilmington series.

Most of the ceramic series on the coast are characterized by sand and/or grit tempering. Pottery from the Refuge series is typically defined as sand; that of the Deptford and Savannah series is usually described as a combination of both sand and grit; and, finally, Irene pottery is usually classified as grit tempered. Unfortunately, the sorting criteria used in the published descriptions of these types is not explicitly stated, and we are left to a somewhat subjective assessment of the pottery. In this analysis, an attempt was made to sort sand and grit temper according to particle sizes determined by the Wentworth scale. This is a scale used by geologists (and ceramicists) to measure grain size in millimeters.

Refuge ceramics are generally described as "very sandy" with a coarse, friable texture (DePratter 1979a:120-123, 1991:163; Cable 1992:54). Here, this type description is used in reference to sherds with abundant fine to medium (less than 0.5 mm), rounded sand particles.

Both Deptford and Savannah series ceramics are typically described as having a combination of both sand and grit tempering, and in the absence of distinguishing surface treatments the sorting of these types can be difficult (Caldwell and Waring 1939; DePratter 1979a, 1991; Saffer 1979; Waring and Holder 1968). At least in general, the published descriptions of these types suggest that Deptford ceramics contain more, and somewhat larger temper particles than Savannah sherds. In addition, the interior surfaces of Savannah pottery
types are usually described as more carefully smoothed (and often burnished), while those on Deptford sherds are more often labelled as carelessly finished (DePratter 1991). In this analysis, finely finished sherds with relatively smaller, and less abundant temper particles have been classified as Savannah. More specifically, this category generally includes sherds with fine to coarse (less than 1.0 mm) sand temper particles. Sherds associated with the Deptford series, on the other hand, are those with rougher surfaces, and with more abundant sand temper that includes occasional very coarse (1.0 to 2.0 mm) inclusions.

Temper in Irene series pottery is often described as grit or gravel (Caldwell and McCann 1941; Caldwell and Waring 1939; DePratter 1979a, 1991). However, most of the particles actually fall in the range of very coarse sand (1.0 to 2.0 mm). On the whole, temper size is larger and more abundant than that of any of the preceding periods. In addition, the interiors of Irene sherds are usually smoothed or burnished (DePratter 1979a, 1991).

Prehistoric Lithics
Flaked stone artifacts were divided into two major categories, flaking debris and flaked stone tools, subcategories of which are described below.

Flaking Debris is defined as culturally altered stone that has not been used for any particular activity. It is the discarded by-product of tool manufacture.

Early reduction flakes result from tasks related to quarrying, core trimming and shaping the edge on a quarry blank. These flakes are thick and relatively flat, with heavy platforms, conspicuous bulbs of percussion and few and widely spaced dorsal flake scars. Many of the flakes retain cortex on the dorsal surface. For quartz artifacts this is somewhat ambiguous. Usually cortex from quartz pebbles is darker or differs in color and has a rougher texture. Cortex from vein quartz commonly retains a dull luster that differs from non-cortical surfaces. Cortical flakes were further divided into three size categories: < 1 cm, 1-3 cm, and > 3 cm.

Late reduction flakes result from thinning and shaping of a preform as well as maintenance of a finished biface. Flakes are often thin and curved with smaller striking platforms, diffused bulbs of percussion, and multiple dorsal flake scars. Late reduction flakes retain at least the proximal end and less than 50% of the parent rock cortex on the dorsal surface. Late reduction debris was divided into three size categories: < 1 cm, 1-3 cm, and > 3 cm. It should be noted that this category includes what are sometimes referred to as biface thinning, or edge rejuvenation, flakes.

Shatter can result from both early and late reduction activities, but are most often associated with early reduction. Shatter are triangular, blocky fragments lacking any attribute of a flake.

Cores, Core Fragments, and Stage 1 Preforms represent forms of early stage lithic reduction. Cores are flakable lithic raw material nodules that have at least two flake scars. Stage 1 preforms represent the early stage of biface production, wherein flakes have been detached from dorsal and ventral surfaces of a thick flake/blade blank or raw material nucleus in a radial pattern. On these preforms, the typical flake scar length is
at least half the width of the blank or raw material nucleus. The crosssection of the blank or nucleus is usually biconvex and the lateral edges are sinuous.

Chunks are distinguished from cores by the lack of complete flake scars or only one complete flake scar. Flakable lithic raw material is not considered to be cultural if it occurs locally and lacks any evidence of cultural alteration.

Flaked Stone Tools range from unshaped, utilized debris fragments (expedient tools) to deliberately shaped, techno-functional forms (formal tools). Discarded tools are essentially the final stage of lithic use.

Projectile points/knives (PP/K) are shaped tools that were usually hafted, bifacially reduced, and presumably had a variety of uses. Usually, they are good temporal markers.

Other Biface/Biface Fragments includes all bifacially reduced tools in the final stages of tool reduction (i.e., those that are reduced beyond the preform stage), with the exception of PP/Ks. These bifacial tools may or may not be hafted tools.

Preforms are bifacially reduced blanks that have at least the second stage of bifacial thinning flakes removed but lack the shape of a finished, hafted bifacial tool, i.e. a PP/K. All cortex of the raw material nucleus or the flaking platform and bulb of percussion of the blank have been removed by later stage flaking. The preform is thinner than a stage 1 preform but still retains a biconvex shape and sinuous lateral edges.

Unifaces are tools that have been reduced through unifacial flaking on the dorsal or ventral surface of a flake/blade blank. This tool category may represent flakes/blades that have been repeatedly sharpened during use or it may represent formal, diagnostic tool forms. The latter forms commonly have steeply beveled edges, whereas the former, expedient forms are not as steeply beveled.

Flake Tools are usually large flakes that have evidence of use and/or retouch on one or more lateral edge.

Perforators, Gravers, and Awls are tools with features, along with evidence of use, that suggest perforating, scoring, or piercing activities. These features may appear on composite flake tools or on modified, expended cores.

Wedges are flakes, expended cores, or broken tool fragments that display bashing or step fractures on opposite sides or ends of the implement. Wedges are usually relatively thick with tapering edges or are conical in shape. Their shape and features suggest that they functioned as splitting implements.

Other lithic tools include pecked stone tools and ground stone tools. Pecked stone tools include implements used for flaking stone, e.g. hammerstones and anvils. These tools display pecked surfaces on the protruding edges or corners (hammerstones) or concave or pitted surfaces on the flat sides of stones (anvils). Ground stone tools are stone tools that acquired their shape
through grinding, rather than flaking, or are stones used for grinding vegetal materials such as grains or nuts, e.g. manos and metates. Ground stone tools were recorded by number and weight. Fire-cracked rock was recorded by weight.

Our technological analysis of flaked stone generally follows the lithic reductive models developed by Callahan (1979) as modified by Collins (1975:14-37), as well as the model developed by Blanton (1986:Appendix F). In Blanton’s model, the processes of flaked stone manufacture and use are perceived as a series of five ordered stages:

1. Procurement. This stage takes place at the raw material source, such as a geologic outcrop or stream gravel bars. Residue includes modified boulders or cobbles, cores, hammerstones, tools in early stages of reduction, early stage debris, and rejected chunks of raw material.

2. Early and Intermediate Production Stages. Production stages preparatory to final shaping are carried out next. In biface production, this involves thinning and margin shaping. In flake tool production, this involves core preparation. Early stage bifaces are recognized by thick cross sections, irregular flake scars, and sinuous margins. Intermediate-stage bifaces still exhibit irregular flake scar patterns, but the scars are less prominent. The residue of this stage include damaged preforms, smaller cores, debitage with moderate cortex, and rejected trimmed flakes.

3. Late Production Stages. This stage involves the final shaping, edging, and hafting of a tool. Associated with this stage are small hammerstones, late stage debitage, and late stage manufacturing failures. Late stage bifaces will be thin with straight margins and regular flake scar patterns. Heat treating should be common at this stage.

4. Tool Use. The goal of the preceding stages is the production of functional tools. Following Binford (1978), these consist of personal gear, situational gear and site furniture. Personal gear includes hafted bifaces, formal endscrapers, other bifaces, and flake blanks. Situational gear includes items of expedient nature fashioned to meet unexpected needs often by scavenging for material or modifying an item of personal gear. Examples include flake tools and modified formal tools. Site furniture includes items left at the site for future use such as grinding slabs, hearthstones, hammerstones, anvils, and caches of blanks or tools.

5. Discard. Final discard marks the points at which artifacts enter the archaeological record. The locations of discard are related to the context of use or site function. Based upon the type of discard it should be possible to separate sites of different functions.
Evaluation Criteria

All sites were evaluated using guidelines established by the National Register of Historic Places criteria 36CFR 60.6 a-d, for establishing eligibility to the register. Criteria "d" mainly addresses archaeological sites, and states that significant sites "have yielded, or may be likely to yield, information important in prehistory or history." This was the main criterion used to evaluate sites on this project.

Given the limited extent of information generated at the survey level, it is very difficult to definitely demonstrate that a site can yield more significant information. It is, however, often possible to determine that due to poor preservation and sparsity of cultural material, a site is not likely to produce more important information. It is for these reasons that this, and most cultural resources surveys, generally distinguish between sites that are not likely to produce significant information (ineligible) from those that might produce important information (potentially eligible).

While the range of "important information" is wide and diverse, it can be simply defined as consisting of data that provides new, non-redundant, non-trivial information beyond which has been gathered by the survey. To simplify this further, this essentially equates to well preserved artifact distributions and features, which can provide new insights into lifeways, subsistence, and absolute chronology, and other issues and research questions presented in the state’s Archaeological Research Design Papers.

For the purpose of this survey, a site was considered eligible or potentially eligible if:

1) it appears relatively undisturbed; and
2) there are sufficient quantities of cultural material present for meaningful analysis or to suggest the presence of features, or
3) the types and diversity of artifacts (fire-cracked rock, tool diversity, ceramics) suggest the presence of features, or
4) rare or unusual components are present.

The primary reasons for recommending a site ineligible are:

1) the soil strata containing cultural material has been disturbed to the extent that there is little potential for identifying meaningful artifact distribution patterns or locating features, or
2) the site is relatively undisturbed but so little cultural material is present that there is little potential for conducting further meaningful research, or
3) for historic sites, the site is so recent and common that archaeological investigation would be unlikely to yield new, important information.

Sites recommended ineligible for the National Register are still important for settlement system studies and cultural history reconstructions, but the data collected during Phase I survey is sufficient for these studies.
Curation

Following the completion of this contract, all artifacts, notes, photographs, analysis forms, and other information generated by this survey will be transferred to the Department of Public Works, Fort Stewart Military Reservation for curation.
CHAPTER 3
Archaeological Investigations of the Lewis Mound Site

The Lewis Mound and Village site (9BN39), is located approximately one kilometer south of the Canoochee River, at a point three kilometers west of its confluence with the Ogeechee. The site lies on a relatively narrow projection off of a broad terrace plain. Vegetation on the site consists of mature hardwoods (predominantly oak and hickory) with lesser amounts of pine and moderate understory. North of the site, in the floodplain of the Canoochee, are wetlands. To the south, vegetation grades into broad, flat expanses of pines typical of the interior Coastal Plain.

There are a few obvious signs of disturbance on site 9BN39. For example, tire ruts and cut trees provide evidence that the landform has been selectively logged in the past. In addition, foxholes have been excavated on the slopes of the landform (just above the surrounding swamp). Finally, a large borrow pit (now a pond) was excavated to the south of the site. For the most part, however, these disturbances have avoided the area surrounding the mound, or have resulted in only minimal ground disturbance.

Although site 9BN39 has undoubtedly been plowed in the past, it seems to have been spared much of the destruction evident on other, extensively cultivated sites in the region. In fact, the site appears to have been forested throughout the twentieth century, and was perhaps only minimally tilled throughout the historic era. On a 1948 aerial photograph, the site is covered by a thin scatter of vegetation, and the mound itself appears to be overgrown by large trees (Figure 14). This probably indicates that the landform had lain fallow for some time. An earlier map source (USGS 1920) suggests that the area now covered by the pond was still cultivated in the early twentieth century, but the site itself was forested at that time.

The Lewis Mound site was first recorded by Professional Analysts during a sample survey of Fort Stewart in 1982 (Miller et al. 1983). The mound was shown to Professional Analysts by Tom Lewis, an avocational archaeologist and a former soldier on the reservation. Lewis had excavated a trench into the mound some time prior to this. This trench, as well as another, previous excavation by an unknown party, were both open at the time of Professional Analysts’ visit to the site. Miller and his colleagues (1983) mapped the mound (Figure 15), recorded the stratigraphy of this trench (Figure 16), and made a small surface collection.
Figure 15. Reproduction of Professional Analysts (1982) Sketch Map of the Lewis Mound. The map has been reoriented with north at the top of the page.
Figure 16. Reproduction of Professional Analyst Sketch of the Profile of the Lewis Mound.
Professional Analysts (1982) sketch map of Lewis' trench provides our only knowledge of the stratigraphy of the mound, and the only concrete evidence that the earthwork is, in fact, a burial mound. Their report includes the following description (Miller et al. 1983: 212):

The stratigraphy of the mound...consists of five levels. The upper two levels consist of dark sand and humus while the lower levels are lighter colored sands. The five strata observed in the profile represent the different soil layers deposited during mound construction. The third level was the thickest and was probably the primary mound fill. It also contained a burial feature, a gastropod shell, and aboriginal pottery.

Professional Analysts' illustration of the mound stratigraphy includes, as stated above, five distinct soil strata. Layers 1 and 2, the uppermost strata, each appear to be 10 cm thick. Layer 1 consisted of a yellowish brown sand, while Layer 2 was a dark gray sand (Miller et al. 1983: 212). As Miller and his colleagues (1983: 213) note, Layer 3 undoubtedly represents the primary (and perhaps single) stage of mound construction. The recovery of a gastropod shell and the identification of human bone in this strata point to the probability that this 35 cm thick soil layer capped a human burial. The sherds the authors noted in this level would seem to represent incidental inclusions in the fill, given the absence of occupation layers. Levels 4 and 5 probably represent the original A and B Horizons, respectively, which were present on the site when the mound was constructed. Layer 4 was slightly less than 10 cm thick and consisted of grayish brown sand. Only about 5 cm of Layer 5, a pale yellow sand, were present in the profile, but this horizon continued below the base of the excavation.

Although Professional Analysts (Miller et al. 1983: 212) report that artifacts were present in the looter's trench, they list only one provenience from the site, a general surface collection. This collection was apparently made from the surface of a road about 100 m southeast of the mound (Miller, et al. 1983: 212). Miller and his colleagues (1983: 212) refer to this area as the "village" or "habitation area," but no shovel tests were excavated on the site and this conclusion is clearly speculative.

While recognizing the importance of the Lewis Mound site, Miller et al. (1983: 212) did not make a final eligibility determination for 9BN39. The site is considered a "Category II" property under their classification system. This category includes "historic properties of significance which contribute significantly to the cultural heritage or visual beauty and interest of the installation and its environs, and which should be preserved" (Miller et al. 1983:245). As Thomas et al. (1995:98) note, this category effectively translates as cultural resources that should be considered potentially eligible to the National Register.

In order to provide a firm determination of eligibility for site 9BN39, an archaeological testing program was initiated. One of the first and most important steps in this testing consisted of the detailed topographic mapping of the site. Figure 17 presents a detailed topographic map of the site as a whole, including the locations of shovel tests and test pits. Figures 18 and 19 document the current proportions of the Lewis Mound.

As these figures indicate, the Lewis Mound is roughly circular, and measures approximately one meter high and fifteen meters in diameter. Although they have been backfilled, the general outline of the two excavations into the mound are still visible.
Figure 17. Detailed Topographic Map of Site 9BN39.
Figure 18. Detailed Topographic Map of the Lewis Mound.
Figure 19. North-South and East-West Profiles of the Lewis Mound.
Apart from mapping, however, this testing was designed to avoid the mound itself. Instead, our investigations focused on the occupation area. This phase of the investigation commenced with intensive shovel testing to locate the main habitation areas, and to delineate the limits of the site.

Shovel Tests

Shovel tests were excavated at 10 m intervals across the Lewis Mound site. There was a total of 146 shovel tests, and over half of these (N=82, or 56.2%) were positive. Virtually all of the tests on the higher elevations of the landform yielded artifacts. Therefore, contrary to the supposition of Miller et al. (1983), the main habitation area or village appears to have been in the region surrounding the mound, well to the north of the area they surface collected. In fact, the southern portion of the ridge top closest to the pond had a significant number of negative tests. This probably indicates that the site never continued into the area that has been disturbed by the borrow pit. In any case, the site is now almost exclusively in the woods to the north of the pond, and remains reasonably intact.

Artifacts and soil stratigraphy from the positive shovel tests are listed in Appendix A. Generally, the soil profiles on most of the site consisted of about 20-30 cm of dark greyish brown sand loam over 20 cm of dark yellowish brown sand, all over a pale brown sand. In several tests, the darker topsoils continued somewhat deeper, indicating possible features. On the northern end of the ridge top, as well as on the eastern and western slopes of the landform, orange sandy clay subsoil was intercepted approximately 60-80 cm below the ground surface.

With an average of 5.8 artifacts per positive shovel test, artifact density could perhaps be described as moderate overall. However, some shovel tests yielded considerable quantities
of cultural material. For example, a shovel test at grid location N570 E520 yielded over 100 sherds, apparently all part of a single vessel. A few other tests produced over 20 sherds.

Figures 21-27 are dot density maps that provide useful, if somewhat abstract, representations of the distributions of certain artifact types in our shovel tests. As Figure 21 demonstrates, the scatter of prehistoric artifacts covers most of the ridge top without interruption. Prehistoric ceramics are also fairly continuous in their distribution across the top of the ridge (Figure 22). However, areas of concentration are apparent immediately to the south of the mound, approximately 30 m to the southeast of the mound on the N470 line, and to the northeast of the mound in the shovel test at N570 E520. By comparison, the distribution of prehistoric lithics in our shovel tests is much more spotty (Figure 23). Again, however, a few areas of concentration are apparent. These include the area about 30 m to the southeast of the mound on the N470 line, as well as an area about 30 m north of the mound.

Refuge and Deptford series pottery occurred only sporadically in our shovel tests, and generally only in small quantities (Figure 24). The single exception was the previously noted shovel test at N570 E520, which yielded a large number of fragments from a Deptford Linear Check Stamped pot. Grog tempered sherds of the Walthour, Wilmington, and Saint Catherines series ceramics were, by comparison, more widespread in our shovel tests (Figure 25). A few areas of concentration were noted. These included the previously noted "hot spot" about 30 m south of the mound on the N470 line, as well as areas to the northeast and west of the mound.

Savannah series pottery was perhaps the most widely and evenly distributed of all the ceramic types (Figure 26). One area of concentration is apparent just to the south of the mound, but this was largely the result of one pot break. The area about 30 m to the south of the mound exhibited relatively high artifact density for this category as well.
Figure 22. Density of Prehistoric Sherds in Shovel Tests on 9BN39.

Figure 23. Density of Prehistoric Lithics in Shovel Tests on 9BN39.
Figure 24. Density of Refuge and Deptford Series Sherds in Shovel Tests on 9BN39.

Figure 25. Density of Grog Tempered Sherds in Shovel Tests on 9BN39.
Finally, the shovel test data suggested that historic artifacts were rare on the site, with most occurring in two areas of the site (Figure 27). The first of these, to the north of the mound near the small trail, consisted of modern debris. The second, about 20 m to the southeast of the mound, provided the first hint of a previously unrecognized colonial occupation on this portion of the site.

Test Units

Shovel test data guided the placement of larger test units on site 9BN39. These larger excavations included five 1 x 2 m trenches and three 2 x 2 m squares. The following section will provide brief descriptions of these units and their artifact assemblages. Detailed artifact inventories are presented in Appendix A.

Test Unit 1

Test Unit 1, a 1 x 2 m test pit, was excavated at grid coordinates N490-492 and E489-490. An adjacent shovel test (N490 E490) had yielded a fairly large number of ceramics, including several diagnostic types, and it was hoped that an excavation in this area could produce a larger sample of these sherds.

The unit was excavated in six arbitrary 10 cm levels. The first level removed the humic layer and the dark brown sandy loam plowzone. The underlying soil horizon, a yellowish brown sand, was removed with Levels 2 and 3. With Level 4, the soil became much lighter. Levels 5 and 6 each worked an additional 10 cm into this pale brown sand.

Test Unit 1 produced 97 prehistoric sherds and 11 flaked stone lithics. Sherd density peaked in Level 2, at the top of the yellowish brown sand, and declined throughout the remainder of the unit. Lithic density was highest in Level 3, toward the base of the yellow brown sand, and also dwindled steadily with increasing depth. Level 5 produced just one chert flake, and the last level in the unit (Level 6) was sterile.

Test Unit 2

A second 1 x 2 m excavation, Test Unit 2 was placed to the northeast of the mound, near the shovel test that had produced a Busycon shell. The grid coordinates for this unit were N538-540 and E508-509.

Level 1 was an arbitrary 10 cm level that largely coincided with the plowzone, a dark brown silty sand. As was generally true across the site, below the plowzone lay a dark yellow brown sand layer. Levels 2 and 3 removed this soil horizon. With Level 4 the soil again changed to a lighter colored sand, and from there remained essentially unchanged to the base of the excavation, at the bottom of Level 9.

A dark roughly circular stain was observed along the east wall of the unit at the base of Level 7. Although artifact counts had diminished by this depth, the stain was designated as Feature 1 and was excavated separately from the remainder of the unit on the chance that it may have been cultural. The stain became darker in Levels 8 and 9, and then diminished a few centimeters below the latter level, at a depth of about 99 cm below the ground surface. However, a few smaller, circular stains (possibly root molds) continued below this. The inconsistent shape, color, and texture of Feature 1, coupled with these possible tap roots,
Figure 28. The East Profile of Test Unit 1 on Site 9BN39.
Figure 29. The East Profile of Test Unit 2.
suggests that the stain is the result of tree disturbance. Screening of the feature fill produced no artifacts, but did yield a small quantity of charcoal.

As was the case in Test Unit 1, the heaviest artifact density in this test pit was in Level 2, at the top of the yellowish brown sand. Density decreased with depth, and the two lowermost levels were sterile. Test Unit 2 produced 113 prehistoric sherds and 83 flaked stone lithics. Lithic density was higher here than in any other test pit on the site.

Test Unit 3

The third test unit, which also measured 1 x 2 m, was located approximately 30 m to the south of the mound, at grid coordinates N467-468 and E520-522. Several shovel tests in this area had suggested relatively high artifact density on this portion of the site, an observation that was confirmed with Test Unit 3.

The pit was excavated in eight levels, to a depth of 80 cm below the ground surface. Level 1 removed the thin plowzone layer. Possible plow scars were observed running southeast to northwest at the base of this level, which was only approximately 10 cm deep in this area. The second soil horizon, a mottled dark yellow brown/gray brown sand, was removed with Level 2. At the base of this 10 cm layer, the soil changed to a lighter and more homogenous light yellow brown sand horizon. This strata also proved to be quite thin, and was removed with a single 10 cm level (Level 3). Levels 4-8 worked through the lowermost soil horizon, a white sand, in 10 cm increments.

Relative to size, Test Unit 3 produced the most artifacts of all the test pits on site 9BN39. Levels 1-7 yielded a total of 187 sherds and 37 flaked stone lithics (Level 8, the final level in the unit, was sterile). Small quantities of historic artifacts, including both some modern debris and a small quantity of possible old brick, were also recovered. Here, sherd density reached its highest point in Level 2, while lithics were most plentiful in Level 3.

![Figure 30. The North Profile of Test Unit 3.](image-url)
Test Unit 4

Test Unit 4, a 2 x 2 m test pit, was located directly south of the mound at grid location N496-498 and E501-503. Although one nearby shovel test (N500 E500) had produced a relatively large number of sherds, most of the other tests in this area had yielded far less, and seemed to signal an area of lower artifact density. Test Unit 4 was positioned to investigate this possibility.

The first level in the unit worked 10 cm into the plowzone, a very dark gray fine sandy loam. Level 2 removed the remainder of this A Horizon and continued into the underlying grayish brown fine sand loam. A few centimeters into Level 3, the soil became lighter and less loamy. Levels 4-8 each worked 10 cm into this very pale brown sand.

Test Unit 4 confirmed our suspicions of relatively low artifact density in the area immediately south of the mound, producing just 26 flaked stone lithics and 59 sherds. Only Unit 8, on the southern periphery of the site, exhibited lower artifact density. The test pit did, however, produce one very notable artifact. This was a bannerstone fragment found in Level 5. In addition, one small possible tabby fragment was recovered from Level 2.

The density of both sherds and lithics peaked in Level 2. Sherds continued in small amounts in Levels 3 and 4, but only lithics were recovered from Levels 5, 6, and 7. Level 8 was sterile.

Figure 31. Excavation of Unit 4 on 9BN39. The Lewis Mound is in the background at left.
Figure 32. The East Profile of Test Unit 4 on Site 9BN39.
Test Unit 5

The second 2 x 2 m excavation, Test Unit 5 was placed within the area of high ceramic density about 30 m south of the mound. The grid coordinates for this pit were N468-470 and E504-506.

The soil profile in this test unit consisted of three distinct strata. The uppermost of these three, a very dark greyish brown sandy loam, continued to a depth of approximately 20 cm below the ground surface, and was removed with two arbitrary 10 cm levels (Levels 1 and 2). Beneath this plowzone layer was a mottled yellowish brown sand horizon. This strata was approximately 10 cm thick and was excavated with Level 3. The final soil stratum in the test unit, a very pale brown sand, was excavated with five 10 cm levels (Levels 4-8).

Test Unit 5 exhibited relatively high prehistoric ceramic density (N=187), but produced very few lithics (N=26). Level 2 yielded the highest quantity of pottery, as well as the base of a triangular projectile point and a wrought nail. Lithic density was highest in Level 4.

![Figure 33. The East Profile of Test Unit 5 on Site 9BN39.](image)

Test Unit 6

Test Unit 6, a 1 x 2 m test pit, was placed to the northwest of the mound, at grid location N520-522 and E493-494. The first soil horizon, a very dark greyish brown A Horizon, was excavated with Levels 1 and 2, each 10 cm thick. In Level 3, the soil changed to a dark brown silty sand. This horizon continued to the base of the level, where it gave way to a lighter colored brown sand. Excavation continued in 10 cm increments through this stratum until a strong brown sandy clay subsoil appeared at the base of Level 7, wherein excavation was terminated.
Like Unit 5, Test Unit 6 produced a relatively large number of sherds (N=81), but comparatively few lithics (N=22). The density of both artifact classes was highest in Level 2, and declined steadily with increasing depth. The two lower-most levels in the unit (Levels 6 and 7) yielded no cultural material.

Figure 34. The West Profile of Test Unit 6 on Site 9BN39.
Test Unit 7

The last of the three 2 x 2 m test pits, Test Unit 7 was located at N481-483 and E518-520. An adjacent shovel test (N480 E520) had apparently intercepted a feature, producing large quantities of bone from a deep, dark midden layer. However, the shovel tests yielded only one historic artifact (a nail) and one prehistoric ceramic, and it was therefore unclear if the feature was associated with the prehistoric or historic components on the site. In placing Test Unit 7 several meters to the north of this shovel test, we hoped to catch an edge of this feature, while preserving most of it for future investigations.

The stratigraphy of Test Unit 7, while generally similar to that of the other excavation units on the site, was somewhat more complicated in certain aspects. Levels 1 and 2 were essentially a plow zone layer, but appeared darker and more midden-like here than on other portions of the site. At the base of Level 2, this sheet midden gradually gave way to a mottled yellow brown sand layer. Level 3 worked 10 cm into this lighter colored horizon.

At the base of Level 3, a dark black stain was apparent in the southeast corner of the unit (Figure 34). This stain was presumably the edge of the feature encountered in the adjacent shovel test. The stain was designated Feature 3, and was mapped and photographed at this level. The feature fill was removed and bagged for fine screening in the laboratory.

Processing of this feature fill through 0.16 cm mesh revealed small quantities of oyster shell, fired clay, and charcoal, in addition to both prehistoric and historic artifacts. The consistency of the feature suggests that it is associated with the historic occupation on the site, and that the few small prehistoric sherds are likely incidental inclusions. Precise interpretations of the feature are difficult (given that only a small portion was excavated), but it is reasonable to conclude that Feature 3 is a large trash pit, or perhaps a cellar that was filled with household debris.

Figure 35. Feature 3 in Test Unit 7 on Site 9BN39 Prior to Excavation.
Figure 36. Plan Views of Features 3 and 4 in Test Unit 7 on Site 9BN39. Top: Feature 3 at base of Level 3. Bottom: Feature 4 at base of Level 4.
Figure 38. Photograph of the East Profile of Test Unit 7 on 9BN39.

Figure 39. Photograph of the South Profile of Test Unit 7 on 9BN39.
With Feature 3 removed, the excavation of Test Unit 7 continued with the removal of Level 4, a second arbitrary 10 cm level into the light yellow sand horizon. At the base of this level, another area of discoloration was noted along the south wall of the unit. Although somewhat mottled and not clearly defined, the stain appeared to be roughly circular. Designated Feature 4, the mottled brown stain was mapped as it appeared at the base of the level. The feature fill was excavated separately from the matrix of the unit, and was screened in the field through standard size mesh. Unfortunately, no artifacts were recovered. However, the stain had a well-defined, basin-shaped profile typical of prehistoric storage or refuse pits. Given the lack of artifacts and its light color, a storage pit seems the most likely interpretation.

Following the removal of Feature 4, we continued the excavation of Test Unit 7. At the base of Level 4, the soil had turned to the largely sterile white sand layer seen in other units on the site. Levels 5-7 each worked 10 cm into this soil horizon. Excavation of the unit was discontinued at the base of Level 7, at a depth of 70 cm below the ground surface.

Test Unit 7 produced the highest total number of artifacts (both prehistoric and historic) of any of the test pits on 9BN39. However, when the size of the units is accounted for, the density of prehistoric artifacts in this square was slightly lower than that of Unit 2. The prehistoric assemblage from Unit 7 includes 359 sherds and 75 flaked stone lithics, both of these artifact classes were most dense in Level 2, and declined precipitously with increasing depth below this level.

Test Unit 7 accounted for most of the historic artifact collection from 9BN39. Colonial era artifacts from this provenience included numerous pipe fragments, brick, nails, olive/black glass fragments, a gunflint, and a metal button with amethyst inlay. A small quantity of oyster shell and unidentified bone from this unit are also attributed to the historic occupation of the site. Historic artifacts were recovered in Levels 1 through 5, but were most plentiful in the first level.

Test Unit 8

Test Unit 8, the final test pit on 9BN39, was placed on a slight rise near the southern end of the site. Shovel tests had indicated that artifact density was very light in this area, a supposition that was largely confirmed with this excavation. The grid coordinates for this 1 x 2 m pit were N440-441 and E516-518.

The soil profile for Test Unit 8 included three strata. The very dark greyish brown fine sand loam was primarily removed with Level 1, but continued into the second level in the east half of the unit. In the west half of the pit in Level 2, a yellow brown sand appeared. The final stratum, a pale brown fine sand, became evident in Level 3. Levels 4-7 each worked an additional 10 cm into this horizon.

Test Unit 8 exhibited the lowest artifact density of all of the test pits on site 9BN39, including both the lowest total counts and the lowest density relative to size. Level 4 produced the greatest number of artifacts from this provenience. The final level in the unit (Level 7) was sterile.
Figure 40. The North Profile of Test Unit 8 on Site 9BN39.
CHAPTER 4
Material Culture and Components on the Lewis Mound Site

Archaeological testing of the Lewis Mound and Village site resulted in a relatively large and diverse assemblage of artifacts. The following section will review the assemblage before turning to a summary of the occupational history of the site.

Prehistoric Ceramics

A total of 1478 prehistoric sherds was recovered during this testing of site 9BN39. Although slightly less than half of this total (N=644, or 43.6%) could not be definitively identified (generally because they are too small or eroded), the remainder can be classified to named types or series (Table 4).

Test Unit 7, approximately 30 m south of the mound, produced the highest total number of sherds. However, when the size of the test units is accounted for, ceramic density was slightly higher in Unit 3, slightly further south but in the same general area of the site (Figure 41). The concentration of sherds in these two units suggests that this zone was probably the primary occupation area on the Lewis Mound site.

Prehistoric pottery was scarce in Test Unit 8, near the southern end of the site, confirming the pattern that was discerned through shovel testing. Surprisingly, the density of sherds was also quite low in Unit 4, immediately south of the Lewis Mound. This may indicate that the area surrounding the mound was left unoccupied and free of debris during the most intensive settlements of the site.

Figure 42 documents the relative frequencies of each ceramic series in test units on site 9BN39. As indicated, sherds of the Savannah series were the most prevalent in each test unit. Savannah pottery was particularly plentiful in Units 3, 5, and 7. Test Unit 2 produced relatively substantial numbers of Saint Catherines and Walthour/Wilmington series pottery. This substantiates the shovel test data, which suggested that grog tempered sherds were more dense to the northeast of the mound. Saint Catherines ceramics were also fairly common in Units 1 and 6. Refuge and Deptford series pottery was present in small quantities in each test pit, but, like the Savannah sherds, these series were best represented in Units 3 and 7. Finally, sherds of the Irene and Saint Simons series were present only in very small quantities in Test Unit 3.
<table>
<thead>
<tr>
<th>Series</th>
<th>Type/Description</th>
<th>Shovel Tests</th>
<th>Test Units</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Saint Simons</td>
<td>Plain and residual</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Refuge and Deptford</td>
<td>Refuge Plain</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Refuge/Deptford Simple Stamped</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Refuge Incised/Punctate</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>very coarse sand/grit tempered plain</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Deptford Linear Check Stamped</td>
<td>98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Deptford Cord Marked</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Deptford Complicated Stamped</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>107</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Walthour and Wilmington</td>
<td>Walthour Check Stamped</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Walthour Simple Stamped</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wilmington Plain</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Wilmington Brushed</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Wilmington Fabric Marked</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>4</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Saint Catherines</td>
<td>St. Catherines Plain</td>
<td>10</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>St. Catherines Fine Cordmarked</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>St. Catherines Net Marked</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>13</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Savannah</td>
<td>Savannah Plain</td>
<td>113</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Savannah Fine Cordmarked</td>
<td>10</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Savannah Complicated Stamped</td>
<td>6</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>129</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>Irene</td>
<td>Irene Plain</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Irene Complicated Stamped</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>unidentified</td>
<td>other/residual/eroded</td>
<td>116</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>369</td>
<td>97</td>
<td>113</td>
</tr>
</tbody>
</table>
The pottery assemblage from the Lewis Mound site is the largest from any single site from Fort Stewart to date, and one of the largest for the immediate region. As such, it is useful for comparative purposes, and may also serve as a guide for future archaeological investigations on the reservation. It is, therefore, important to analyze the collection in some detail.

Saint Simons Series

Saint Simons period ceramics formed a minority type on the site, accounting for just 0.3% of the total sherds. Only Irene series ceramics were less common.

Five fiber tempered Saint Simons Plain sherds were recovered, all from Test Unit 3. Most of these were too small and eroded to identify surface decoration, but one appears to be plain (Figure 43).

In terms of their stratigraphic distribution, there is some limited evidence that this component may be positioned at slightly lower depths than the later pottery series. The Saint Simons sherds were recovered from Levels 3-5, generally below the main ceramic bearing levels in the test unit (Levels 1-3). Given the small size of the sample and their limited distribution across the site, however, this conclusion must remain tentative. Similarly, the sample size is too small for meaningful comparisons with other assemblages from the region.

Refuge/Deptford Series

A number of sherds from the Refuge and Deptford series were recovered during testing of site 9BN39. In terms of their relative frequency, the combined total for these series is second only to that of the Savannah types. However, this total is somewhat misleading, as almost half of the Refuge/Deptford sherds were recovered in one shovel test, and probably represent the remains of a single vessel.

With the exception of these Deptford Linear Check Stamped ceramics, the sherds from the Refuge and Deptford series are predominantly plain, with only minor quantities of decorated types. Of the numerous plain sherds, only eight can be classified as Refuge Plain. This category was used conservatively, and only includes sherds with abundant fine sand aplastics, as originally defined by Waring (1968) and later by DePratter (1979a, 1991). More precisely, it describes sherds with sand particles in the very fine to medium (less than 0.5 mm) range. Sherds of this type were significantly thicker than those that are classified as possible Deptford and Savannah Plain. A measured sample of six of the larger sherds from 9BN39 had a mean thickness of 9.8 mm. This is slightly thicker than the mean of 9.0 mm that was obtained for a sample of 35 Refuge Plain sherds in a type collection from the Deptford site (9CH2) at the University of Georgia.

It should be noted that the Refuge series is rather poorly defined, and it is possible that there is greater geographical and temporal variability to the type than is currently recognized. The total number of Refuge sherds on the Lewis Mound site would be significantly higher if the sorting classification was broadened to include sherds with larger sand and grit inclusions.
Sherds that did not conform to the Refuge, Savannah, or Irene types as defined by DePratter (1979a, 1991) were classified as **Very coarse sand and grit tempered plain** (N = 64). More specifically, this classification includes sherds with very coarse (1.0 to 2.0 mm) sand or grit (larger than 2.0 mm) temper and less carefully smoothed surfaces. Although it was not generally used as a sorting criteria, the sherds in this category were noticeably thicker than those which are tentatively identified as Savannah Plain. A measured sample of 50 sherds of this type from the Lewis Mound had a mean thickness of 9.1 mm.

In this analysis, the very coarse sand and grit tempered plain category is considered roughly equivalent to the type Deptford Plain, largely because they are similar in temper to the decorated Deptford wares. DePratter (1991:11) omits Deptford Plain from his most recent ceramic chronologies, choosing to condense all of the Early and Middle Woodland plain pottery into the single type Refuge Plain. He does, however, use the type in his reanalysis of the WPA collections from the Deptford site (DePratter 1991:154-155).

As currently defined by DePratter (1991:11), the pottery type Refuge Plain covers a span of 1600 years, occurring throughout both the Early and Middle Woodland periods. Clearly, some variability may be expected in the type over the course of this interval. The thick, rough-surfaced, coarse-tempered sherds on site 9BN39 may simply be a variety of Refuge Plain. In any case, they are tentatively assigned to the Refuge and Deptford series.

Six **Refuge/Deptford Simple Stamped** sherds were recovered from the Lewis Mound site. Most of these exhibit poorly executed stamping and a friable, sandy paste. DePratter (1991:163) associates these characteristics with the earlier, Refuge variety. However, at least one is more similar to the Deptford type as defined by Caldwell and Waring (1968:110).

Two **Refuge Incised and Punctated** sherds, probably from the same vessel, were recovered from Test Unit 7. The execution of the designs is careful and distinct. Interestingly, half of the Refuge Plain sherds were also found in Unit 7.

Deptford Linear Check Stamped (N = 98) sherds were limited to a single provenience (Shovel Test N570 E520). The similarity in color, temper, and surface treatment indicates that they are all from the same vessel. The application could perhaps be described as sloppy, with poorly defined checks that contrast with the careful execution of designs on sherds of this type from sites on the coast (Caldwell and Waring 1968:116-117; Waring and Holder 1968:137). The temper of the sherds is also somewhat atypical. Although a small number of very coarse sand particles are present, there are few visible aplastics, and the sherds appear almost temperless. The vessel appears to have had a rim diameter of approximately 38 cm.

Only one **Deptford Cord Marked** sherd was identified in the pottery assemblage from 9BN39. As is typical for the type (DePratter 1991:172), this sherd exhibited relatively broad (ca. 2.5 mm), parallel cord impressions. This type is dated to both the Deptford I and II phases of the Middle Woodland period.

One small sherd is provisionally classified as **Deptford Complicated Stamped** based on its temper and surface treatment. The stamping on the sherd is curvilinear, with low and narrow lands. These characteristics are typical for this variety (DePratter 1991:172-173). However, definitive identification is impossible given the small size of the sherd. Deptford Complicated Stamped is restricted to the later, Deptford II phase of the Middle Woodland period.
Figure 44. Selected Refuge and Deptford Sherds from the Lewis Mound Site. Shown actual size.
Significant differences can be noted when the Refuge and Deptford series pottery assemblage from 9BN39 is compared with that from the Deptford site (9CH2) (as tabulated by DePratter 1991:154-155). As indicated in Figure 45, the most significant difference may be the absence of Deptford Check Stamped from 9BN39. This type made up slightly less than one-quarter of the Deptford/Refuge series assemblage from 9CH2, and was reportedly in use throughout much of the Early and Middle Woodland periods (DePratter 1991:11). Other differences include the low incidence of Deptford Complicated Stamped and Refuge Dentate Stamped on the Lewis Mound site. The paucity of these types may indicate that the Refuge and Deptford occupations of the Lewis Mound were relatively insubstantial. Of course, it is also possible that the differences reflect geographical variability in pottery from these periods.

![Figure 45. Comparison of Refuge/Deptford Series Pottery from the Lewis Mound (9BN39) and Deptford (9CH2) Sites.](image)

Walthour and Wilmington Series

Walthour and Wilmington series pottery, which dates to the Late Woodland period, accounted for 2.4% of the ceramic assemblage. Although the size of the sample is relatively small (N=36), it includes a number of named types, which are described below.

One large Walthour Check Stamped sherd was recovered from Level 4 of Test Unit 8. The design is faint, but the checks are large and neatly applied. DePratter (1991:11) places this type in the Walthour phase.
Six grog tempered sherds bear a simple stamped design. These are tentatively identified as Walthour Simple Stamped, a type which DePratter (1991) illustrates, but does not define or place chronologically. Presumably, it too dates to the Walthour phase.

Plain sherds with grog aplastics larger than 3 mm in diameter were defined as Wilmington Plain (N=19). This type forms the bulk of the Wilmington/Walthour series pottery on the site. Wilmington Plain pottery reportedly spans the entire Late Woodland, occurring in both the Walthour and Wilmington phases as defined by DePratter (1991:11).

Two small sherds appear to have fabric impressed designs and grog tempering. These are defined as Wilmington Fabric Marked, although the size of the aplastics is more in the range of Saint Catherines pottery. This type is confined to the Wilmington phase (DePratter 1991:11).

Wilmington Brushed pottery is characterized by very fine, parallel lines on grog tempered sherds. Eight sherds of this type were recovered during testing. This variety also dates exclusively to the Wilmington phase.

The Walthour and Wilmington assemblages from 9BN39 can be compared to those of the two Walthour sites (9CH11 and 9CH16), both of which were excavated by WPA crews and have been reanalyzed by DePratter (1991:22-42). As indicated in Figure 46, the largest difference between the three collections is in the absence of Wilmington Cord Marked on the Lewis Mound site. This difference may indicate that the Wilmington phase occupation of site 9BN39 was relatively brief.

![Figure 46. Comparison of the Frequency of Walthour and Wilmington Pottery Types on 9BN39 with those on 9CH11 and 9CH16.](image-url)
Figure 47. Selected Walthour, Wilmington, and Saint Catherines Sherds from the Lewis Mound Site. Shown actual size.
Saint Catherines Series

Saint Catherines series pottery was the third most common type on the Lewis Mound Site, forming 5.0% of the entire ceramic assemblage. All of the named types for this series are represented.

Saint Catherines Plain (N = 48) accounted for the majority of the sherds from this series. This designation was applied to plain sherds with grog temper particles smaller than 3 mm. Two fairly large rim sherds of this type appeared to be vessels on the order of 26 cm wide at the inside of the rim. Both rims were slightly flaring, but otherwise unmodified.

Saint Catherines Fine Cordmarked (N = 31) sherds were also relatively common on the site. For the most part, these sherds exhibited designs that were faithful to the published descriptions for the type (DePratter 1991: 180), including relatively fine, cross-stamped cord impressions, small (less than 3 mm) grog tempering, and occasional shell scraping on the interior. A measured sample of 16 of the larger Saint Catherines Cord Marked sherds had grooves ranging from 0.8 - 2.0 mm with a mean of 1.4 mm, and lands ranging from 1.3 - 3.8 mm with a mean of 2.2 mm. Trinkley and his colleagues (1992: 27) report an average groove of 2.0 mm for a sample of this type from a shell midden site in South Carolina.

Only one large Saint Catherines rim sherd was recovered. This sherd has a thinned and rounded lip. The area below the lip appears to have been smoothed. The vessel probably had a diameter of about 26 cm at the lip, somewhat smaller than other published measurements for this type (e.g., Brooks et al. 1982: 25).

One sherd is tentatively identified as Saint Catherines Net Marked. This is a small plain rim sherd. Positive identification is difficult given the small size of the sherd. It is possible that the design is actually a fabric impression.

The Saint Catherines assemblage from the Lewis Mound site is composed of approximately one-third plain and two-thirds cord marked sherds. This contrasts rather sharply with the assemblages from two predominantly Saint Catherines period sites in South Carolina, the Callawassie Island Burial Mound (38BU19) (Brooks et al. 1982) and a shell midden site on Hilton Head Island (38BU33) (Trinkley et al. 1992). At both of these sites, Saint Catherines Cord Marked predominated (Figure 48).

Savannah Series

Pottery of the Savannah series accounted for more than one-third of the ceramic assemblage from the Lewis Mound, outnumbering sherds of all the other series combined. Three distinct Savannah types were noted.

Savannah Plain/Burnished (N = 483) was the most common ceramic type on the Lewis Mound site, and made up 89.9% of the Savannah pottery collection. This classification includes sherds that have well-smoothed surfaces, and medium or coarse (0.25 to 1.0 mm) sand aplastics (although occasional larger quartz particles may also be present). Again, sherd thickness was not intentionally used as a sorting criteria, but plain sherds that have been assigned to the Savannah series are consistently thinner than those designated as possible Deptford or Refuge types. A measured sample of 50 Savannah Plain sherds had a mean thickness of 7.2 mm. This compares with an average of 6.7 mm for a sample of 36 sherds in a type collection from the
Irene site (9CH1). Caldwell and McCann (1941:44) report an average of 8-9 mm from the Irene site, while Caldwell and Waring (1939) state that the mean for the Irene sample was 5-7 mm, with an average of 6 mm.

Thirteen of the Savannah Plain sherds include significantly sized portions of the rims. Vessel diameters at the inside of the rim range from 28-36 cm, with an average of 33.9 cm. Most of the lips are rounded, the sherds are predominantly straight or very slightly flaring.

Savannah Fine Cordmarked sherds (N=31) accounted for 5.8% of the Savannah pottery. A measured sample of 25 of the larger examples exhibited cordage grooves ranging from 0.7 to 1.8 mm across, with a mean of 1.3 mm. This compares favorably with the range of 1.0 to 1.5 mm cited by Trinkley and his colleagues (1992:27) for a sample from 38BU833. The lands between cord impressions in the Lewis Mound sample ranged from 1.3 to 4.3 mm wide, with an average of 2.0 mm.

Only three of the Savannah Cord Marked sherds include a significant portion of the rim. Each of these is fairly straight. In this respect they appear similar to the Haven Home Cord Marked type, which DePratter (1991:7) now feels is an early variant of Savannah. Two of the sherds have rounded lips, but are otherwise unmodified. These have interior rim diameters of approximately 24 and 28 cm. The third Savannah Cord Marked rim sherd has a narrow fold, and is flattened. The diameter of this vessel appears to have been slightly larger, approaching 30 cm.

Savannah Complicated Stamped, although a minority ware in the Savannah series collection from 9BN39, nevertheless appeared in relatively large quantities (N=23) on the site. Most of the sherds are too small, eroded, or over-stamped to make out designs motifs. Possible
Figure 49. Selected Savannah Sherd from the Lewis Mound Site. Shown actual size.
designs on some of the larger sherds include the concentric diamond, figure eight or figure nine, and concentric circle motifs illustrated in the Irene Mound report (Caldwell and McCann 1941:45). DePratter's (1991:11) most recent chronological framework places Savannah Complicated Stamped in the later, Savannah II phase.

Caldwell and McCann (1941:78) provide data on the number of Savannah sherds found in the large mound at Irene (9CH1) that is useful for comparing constituent ceramic types. Other comparative data is available from the WPA collections from a low sand burial mound on site 9CH19, and from the shell midden and non-mound occupation areas at the Oemler site (9CH8), both of which appear to have substantial Savannah components (DePratler 1991:54, 88).

In contrast with the Lewis Mound collection, where Savannah Plain pottery was the most common, the Savannah assemblages from the three Chatham County sites are dominated by cord marked pottery. Savannah Plain and Savannah Burnished Plain are a distant second on sites 9CH19 and 9CH8. Interestingly, there were no Savannah Complicated Stamped sherds on these two sites. Savannah Check Stamped pottery was conspicuously absent from the Lewis Mound, but occurred in relatively small quantities on sites 9CH19 and 9CH8.

At Irene, cord marked sherds were followed by burnished plain and check stamped, which occurred in nearly equal proportions. In terms of relative frequencies, Savannah Complicated Stamped pottery was slightly more common at the Lewis Mound site than at Irene.

Figure 50. Comparison of the Frequency of Savannah Ceramic Types on 9BN39, 9CH8, and 9CH19.
The differences between the Savannah collection from the Lewis Mound and those from the two WPA collections from 9CH1, 9CH19, and 9CH8 probably reflect variations in the periods of occupation. However, the proportions of pottery types do not fully support DePratter’s (1991:11) sequence for the period. For example, the collections from 9CH19 and 9CH8 would presumably date to the Savannah II phase, given the presence of check stamped and cob marked sherds. However, the absence of Savannah Complicated Stamped ceramics belies this interpretation. Likewise, the collection from the Lewis Mound would appear to date solely to the Savannah I phase, except that it contains significant quantities of the presumably later Savannah Complicated Stamped sherds. Clearly, more work is needed on the spatial and temporal variations in the composition of Savannah pottery assemblages in the region.

Irene Series

The Irene ceramic series is represented by only a few sherds on site 9BN39. Two of these are Irene Plain and one is a possible Irene Complicated Stamped sherd. Both are similar to the Savannah sherds on the site, but are distinguished by large amounts of very coarse sand and grit aplastics. All three sherds were found in Test Unit 3. Given the small size of the sample, it is difficult to date this component with any certainty. The absence of Irene incised sherds, however, would seem to suggest that the Irene ceramics were deposited on the site during the early, Irene phase of the period.

Unidentified Sherds

Two sherds from the Lewis Mound testing appear to be exotic types that are not commonly recognized on the northern Georgia coast. One of these is a limestone tempered sherd with a possibly shell-scraped surface decoration. DePratter (personal communication 1996) reports that sherds of this temper are occasionally found in the vicinity of Charleston, South Carolina, but never, to his knowledge, on the Georgia coast.

The other unidentified ceramic is a very fine incised sherd. The paste on this sherd includes very coarse sand particles similar to those found in the Savannah pottery on site 9BN39. The lines appear to have been made with a flake, or possibly the tip of a projectile point. DePratter (personal communication 1996) does not recall seeing anything similar in his experience on sites in the Georgia Coastal Zone.
Prehistoric Lithics

Prehistoric lithics were found in each of the eight test units, but the density varied widely. As indicated in Figure 53, the greatest density of lithics was found in Test Unit 2, to the northeast of the mound. Relative to size, the concentration of lithics here was more than double that of any other test pit. Test Units 3 and 7, which had the highest sherd densities, also produced relatively large quantities of lithics. When combined with the shovel test data, this information suggests that there are at least two areas of lithic concentration on the site; one to the northeast of the mound, and the second about 30-40 m to the south. Some of the more interesting lithics from the Lewis Mound site are illustrated in Figure 54.

A total of 301 flaked stone lithics was recovered during testing of the Lewis Mound site (Table 5). Not surprisingly, most of this total was manufactured from chert (N=263, or 87.4%). There is considerable range in the color and quality of chert recovered from the site, but all of it appears to fall within the considerable range of variation attributed to chert sources found within the Coastal Plain. The closest reported chert outcrops to the Lewis Mound are the Eocene and Oligocene deposits in Burke and Screven Counties, the Oligocene sources in Laurens County, and Miocene deposits in Coffee County (Goad 1979). These outcrops are all located approximately 100 km away. Although it was not quantified, a few of the chert flakes are of a more highly weathered and/or poorly silicified material that appears more typical of locally occurring sources that are sometimes found within the Coastal Zone (e.g., Brooks et al. 1982:32).

Chert debitage consisted mainly of late stage debris (N=213, or 81.0%). This is again not surprising, given that the sources of most of the material are located some distance away. Most of the chert was probably brought to the site in the form of preforms or finished bifaces. The late stage debitage likely represents the byproducts of tool finishing or blade edge rejuvenation.

Quartz lithics, although second to chert, comprised a surprisingly large percentage of the total flaked stone assemblage (N=33, or 11.0%). Although quartz is ultimately of Piedmont origin, it may be found in the Coastal Plain in the form of waterworn cobbles in the beds of Piedmont-draining streams (Brooks et al. 1982:32-33). Indeed, a high percentage of the quartz from the Lewis Mound consists of early stage debitage (N=21, or 63.6%), indicating that it was
<table>
<thead>
<tr>
<th>Material Type</th>
<th>Category</th>
<th>shovel tests</th>
<th>test units</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Quartz</td>
<td>early stage debitage</td>
<td>- 2 1 6 4</td>
<td>- 8</td>
<td>21 63.6</td>
</tr>
<tr>
<td></td>
<td>late stage debitage</td>
<td>- 3 3 5</td>
<td>- 1</td>
<td>12 36.4</td>
</tr>
<tr>
<td></td>
<td>Total Debitage</td>
<td>- 2 4 9 9</td>
<td>- 9</td>
<td>33 100.0</td>
</tr>
<tr>
<td></td>
<td>formal tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>expedient tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>- 2 4 9 9</td>
<td>- 9</td>
<td>33 11.0</td>
</tr>
<tr>
<td>Chert</td>
<td>early stage debitage</td>
<td>1 3 11 4 1</td>
<td>3 0 6 1</td>
<td>30 11.4</td>
</tr>
<tr>
<td></td>
<td>late stage debitage</td>
<td>22 7 64 27 11 9 11 58 4</td>
<td>213 81.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Debitage</td>
<td>23 10 75 31 12 12 11 64 5</td>
<td>243 92.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>formal tools</td>
<td>- - 1 - - -</td>
<td>1 -</td>
<td>2 10.0</td>
</tr>
<tr>
<td></td>
<td>expedient tools</td>
<td>3 1 3 2 5 - 2 2</td>
<td>- 18 90.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Tools</td>
<td>3 1 4 2 5 1 2 2</td>
<td>- 20 7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>26 11 79 33 17 13 13 66 5</td>
<td>263 87.4</td>
<td></td>
</tr>
<tr>
<td>Metavolcanics</td>
<td>early stage debitage</td>
<td>- - - - - -</td>
<td>1</td>
<td>1 33.3</td>
</tr>
<tr>
<td></td>
<td>late stage debitage</td>
<td>- - - - - -</td>
<td>2 2</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>Total Debitage</td>
<td>- - - - - -</td>
<td>3 3</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>formal tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>expedient tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>- - - - - -</td>
<td>3 3</td>
<td>1.0</td>
</tr>
<tr>
<td>Petrified Wood</td>
<td>early stage debitage</td>
<td>- 2 - - - - -</td>
<td>2 100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>late stage debitage</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Debitage</td>
<td>- 2 - - - -</td>
<td>- 2</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>formal tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>expedient tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total Tools</td>
<td>- - - - - -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>- 2 - - - -</td>
<td>-</td>
<td>2 0.6</td>
</tr>
<tr>
<td>TOTAL FLAKED STONE</td>
<td></td>
<td>26 11 83 57 26 22 13 75 8</td>
<td>301 100.0</td>
<td></td>
</tr>
</tbody>
</table>
perhaps obtained from nearby sources. A few of the larger early stage flakes in the assemblage bear the curvature of the parent cobble on their dorsal surfaces. The size of these flakes indicates that they were removed from small, rounded cobbles that measured about 5-10 cm in diameter.

Rounding out the flaked stone lithic assemblage are small amounts of metavolcanic (N=3, or 1.0%) and petrified wood (N=2, or 0.6%) debris. The former material generally occurs only in the Piedmont and along the Fall Line, and was a favored material during the Late Archaic period. Petrified wood occurs sporadically in the sedimentary deposits of the Coastal
Plain and Coastal Zone, and large (ca 1 m x 30 cm) fragments have been found in nearby borrow pits on Fort Stewart (Dave McKivergan, personal communication 1996). The two examples of petrified wood from the Lewis Mound do not bear clear flake attributes, but this may be due to the nature of the material. They were undoubtedly brought to the site.

A number of tools were recovered from Test Units on site 9BN39 (N = 20). All of these are manufactured from chert. Only two of the tools are formal bifaces, and both of these are triangular projectile points manufactured from Coastal Plain chert. One was found in Test Unit 2, and the other was recovered from Test Unit 5. The basal widths of these points are 20.1 mm and 18.8 mm, respectively. Previous research in the middle Savannah River Valley has established that, at least on average, triangular points measuring greater than 18 mm date to the Late Woodland period, while those smaller than 18 mm at the base are more typically Mississippian (Sassaman et al. 1990). If this generalization can be applied to the Coastal Zone, the two points would be associated with the Late Woodland Wilmington and Walthour pottery on the Lewis Mound site. However, this chronology has yet to be established for the Coastal Zone and it seems equally plausible that these points are associated with the Saint Catherines or Savannah components on the site.

The remaining tools can be categorized as expedient flake tools. This general category includes one burin or graver (Test Unit 7), one wedge (Test Unit 4), one unifacial "thumbnail" scraper (Test Unit 4), and 14 utilized chert flakes (from a variety of proveniences). All of these are manufactured from Coastal Plain chert. The absence of quartz tools (particularly expedient tools) is somewhat surprising, but is probably largely a reflection of the small sample size, as well as the difficulty in identifying use-wear on quartz flakes. However, chert was clearly the preferred material for both formal and expedient tools.

A few ground stone tools were also recovered from the Lewis Mound testing. Far and away the most notable of these is a bannerstone fragment found in Level 5 of Test Unit 4. The material appears to be some type of igneous rock. Bannerstones have been interpreted as purely ceremonial objects that were attached to staffs (Knoblock 1979), but are perhaps more commonly believed to have served as weights for atlatls, or spear throwers (Webb 1950). Following Binford (1972:28), Kwas (1982:161) suggests that the more elaborate bannerstones may have been high status objects. Artifacts of this type are generally associated with the Middle and Late Archaic periods. The bannerstone from the Lewis Mound fits the "ovoid" type identified by Kwas (1982:167), examples of which have been dated to the late Middle Archaic. However, it seems likely that the ovoid bannerstone from the Lewis Mound is associated with the Late Archaic, Saint Simons component on the site.

Other possible groundstone objects include a few worn quartz cobbles. These could have been used as burnishing stones, but most appear to be too small for such a task. It is possible that they occur naturally.

Other Prehistoric Artifacts

In addition to ceramics and lithics, a few other prehistoric artifacts were found on site 9BN39. The most significant of these is a Busycon, or whelk, shell from Shovel Test N540 E510. Whelk shells are frequently found on prehistoric sites on the Georgia Coast. Most
examples are perforated, suggesting that they were hafted and used as tools (Smith et al. 1986). In other cases, however, the columella was removed so that the shells could serve as ceremonial drinking cups in the ritual drinking of "black drink", or tea made from the leaves of *Ilex vomitoria* (Hudson 1979). This use may have been practiced for some time, but is associated most strongly with the so called "Southern Cult" of the Early and Middle Mississippian periods (Milanich 1979:104), a time at which the occupation of the Lewis Mound appears to have been most intensive. The whelk shell from 9BN39 has not had its columella removed and is also not perforated, so the intended function cannot be determined. However, given that the shell was recovered in proximity to the mound, it is tempting to suggest that it was involved in ceremonial activities. French explorer Jacques LeMoyne observed the use of whelk shells in burial ceremonies conducted by the Timucuan Indians of Florida. An engraving of one of these scenes by Theodore de Bry (1591) shows a whelk shell placed on top of a low sand burial mound similar to the Lewis Mound.

![Figure 55. De Bry (1591) Engraving of Burial Ceremony of the Timucua. Note whelk shell on mound. Courtesy of the Hargrett Rare Book and Manuscript Library, the University of Georgia.](image)

A number of fragments of fired clay were recovered during our testing. These totalled 135 g. All of the fragments are quite small. Possibly some of this material is daub, but in the absence of any larger fragments this is difficult to determine. It seems more likely that these are incidentally fired pieces of clay.
Finally, only one sherd hone was definitively identified in the Lewis Mound collection, from a shovel test at N570 E530. This contrasts with the collections from Saint Catherines Island, where such artifacts were relatively common (DePratter 1979a). Possibly, such artifacts are rare on sites in the interior.

Historic Artifacts

A small quantity of historic artifacts was recovered during our testing of the Lewis Mound site. Although some of this is garbage related to recent military and civilian use of the area, most is associated with a previously unrecognized colonial era component on the site. Test Unit 7 accounted for the majority of the Colonial artifact assemblage. However small quantities of related debris were also encountered in nearby shovel tests, and from Test Units 2, 3, 4, and 5.

Brick was the most common type of historic artifact. All of the pieces are small, with the largest being about one-half of a whole brick. A total of 1686.3 g of brick was recovered, with most of this from Test Unit 7. Other probable structural remains included nails (N=7). These are difficult to identify with certainty, but at least five appear to be wrought nails. Four of the seven nails were recovered from Test Unit 7. The final structural or architectural artifact type identified is tabby, which is represented by a small (1.1 g) fragment from Test Unit 4.

Colonial era household and personal artifacts were restricted to Test Unit 7 and a nearby shovel test (N480 E520). Three heavily patinated olive/black glass fragments were recovered from Test Unit 7, as was a small metal button with purple glass inlay. A gunflint of French manufacture was also found in this test unit.

More temporally sensitive historic artifacts recovered during our testing include three sherds. Two of these are very small, and can only be identified as some type of glazed earthenware. The third historic ceramic is a fragment of combed yellow, lead glazed slipware. South (1977:211) dates this type to the interval from 1670 to 1795, with a median date of 1733.

Other temporally sensitive historic artifacts include kaolin pipe fragments (N=37), all of which were recovered from Test Unit 7. As Nöel-Hume (1969:296) notes, these artifacts are valuable because they were typically "...manufactured, imported, smoked, and thrown away, all within a matter of a year or two." Unfortunately, all of the bowl fragments from the Lewis Mound are too small to identify to type. However, some temporal information is available from the diameter of the stem fragments, which became thinner over the course of the eighteenth century. Of the 16 stem fragments from the Lewis Mound, 14 have holes that measure 1/16 of an inch, and 2 have stem holes of 5/64 of an inch. Using the formula presented in Nöel-Hume (1969:299), the sample has a mean date of 1774.03.

Finally, a relatively large quantity of bone and shell is associated with the historic period occupation of the site. Most of the bone was recovered from a shovel test at grid location N480 E520. Faunal analysis of this sample is summarized in Table 6. An additional 27 g of bone in Test Unit 7 could not be identified. The shell sample is predominantly or exclusively oyster, and includes 115.3 g from Test Unit 7, and 25.0 g from Shovel Test N480 E520. Much smaller pieces of shell were found in other proveniences, but cannot be definitively identified with the historic component on the site.
A) Heavily patinated olive/black glass; B) Unidentified earthenware; C) Metal/amethyst button; D-E) Pipe stem fragments; F-I) Pipe bowl fragments; J) combed yellow, lead glazed slipware; K) Gun flint.
(A. TU7, Level 5; B. TU3, Level 2; C-F. TU7, Level 2; G-K. TU7, Level 1)

Figure 56. Selected Historic Artifacts from 9BN39. Shown actual size.
Table 6. Faunal Analysis of Bone from Shovel Test N480 E520 on Site 9BN39.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>NISP</th>
<th>MNI</th>
<th>Weight (g)</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID Mammal</td>
<td>16</td>
<td></td>
<td>22.44</td>
<td>2 burned</td>
</tr>
<tr>
<td>Ictalurus punctatus (Channel catfish)</td>
<td>31</td>
<td>2</td>
<td>26.04</td>
<td></td>
</tr>
<tr>
<td>Lepomis, spp. (Sunfish)</td>
<td>3</td>
<td>1</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>UID Fish</td>
<td>59</td>
<td></td>
<td>8.53</td>
<td></td>
</tr>
<tr>
<td>UID Bone</td>
<td></td>
<td>3</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>3</td>
<td>59.79</td>
<td></td>
</tr>
</tbody>
</table>

Occupational History

Diagnostic artifacts indicate that the Lewis Mound and Village site was occupied during at least eight broad periods. In certain cases, distinct occupations within these broad periods can be recognized on the basis of the presence or absence of certain diagnostic artifacts. Table 7 outlines these components on the site, using the chronologies developed by DePratter (1991:11). It should be noted again, however, that not all archaeologists agree with this chronology (c.f. Crook 1986). Moreover, the sharp breaks between phases and periods are abstract; in reality these transitions were probably very gradual, and considerable overlap should be expected on the margins of these divisions. Period and phase assignments for the region must be considered tentative until more work is undertaken in the region.

Prehistoric Occupations

Some measure of the intensity of settlement during particular prehistoric occupations of the site can be obtained by factoring the number of diagnostic artifacts relative to the length of the phase. Toward this end, Figure 57 presents the number of diagnostics (in this case, sherds) per 100 years of each component phase. In cases where ceramic types map overlap from one phase to another, the totals have been counted more than once. The two Savannah phases identified by DePratter (1991:11) have been combined in this analysis, because his Savannah II phase lasts only 25 years.

The earliest component on the site that can be definitively identified dates to the Late Archaic period. This occupation is marked by the presence of Saint Simons Plain pottery. Based on the absence of other decorated fiber tempered wares, this settlement may be tentatively placed in the Saint Simons I phase (2200 - 1700 B.C). The bannerstone fragment is likely also associated with this component. Given the small number of artifacts from the period, Late Archaic settlement of the Lewis Mound site was probably very brief, and likely consisted of short stays centered on hunting and plant collecting.

The same probably holds true for the Early Woodland occupation of the Lewis Mound site. This component is indicated by the presence of Refuge Incised and Punctate sherds. Refuge Simple Stamped and Plain sherds may date to this period, but also occur during the Middle Woodland.
Table 7. Components Recognized on the Lewis Mound Site.

<table>
<thead>
<tr>
<th>Period</th>
<th>Subperiod</th>
<th>Phase</th>
<th>Diagnostic Artifact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Archaic</td>
<td>Saint Simons</td>
<td>Saint Simons I</td>
<td>Saint Simons Plain sherd bannerstone fragment</td>
</tr>
<tr>
<td>Early Woodland</td>
<td>Refuge</td>
<td>Refuge I</td>
<td>Refuge Incised/Punctate Refugee Simple Stamped Refuge Plain</td>
</tr>
<tr>
<td>Middle Woodland</td>
<td>Deptford</td>
<td>Deptford I</td>
<td>Deptford Linear Check Stamped Deptford Cord Marked Refuge Simple Stamped Refugee Plain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deptford II</td>
<td>Deptford Complicated Stamped Deptford Cord Marked Refugee Simple Stamped Refugee Plain</td>
</tr>
<tr>
<td>Late Woodland</td>
<td>Wilmington</td>
<td>Walthour</td>
<td>Wilmington Plain Walthour Check Stamped Walthour Simple Stamped</td>
</tr>
<tr>
<td></td>
<td>Wilmington</td>
<td>Wilmington</td>
<td>Wilmington Plain Wilmington Brusted Wilmington Fabric Marked</td>
</tr>
<tr>
<td>Early Mississippian</td>
<td>Saint Catherines</td>
<td>Saint Catherines</td>
<td>Saint Catherines Plain Saint Catherines Fine Cord Marked Saint Catherines Net Marked</td>
</tr>
<tr>
<td>Middle Mississippian</td>
<td>Savannah</td>
<td>Savannah I</td>
<td>Savannah Cord Marked Savannah Plain/Burnished Plain</td>
</tr>
<tr>
<td></td>
<td>Savannah</td>
<td>Savannah II</td>
<td>Savannah Complicated Stamped Savannah Cord Marked Savannah Plain/Burnished Plain</td>
</tr>
<tr>
<td>Late Mississippian</td>
<td>Irene</td>
<td>Irene</td>
<td>Irene Complicated Stamped Irene Plain/Burnished Plain</td>
</tr>
<tr>
<td>Historic</td>
<td>middle to late eighteenth century</td>
<td></td>
<td>combed yellow, lead glazed slipware kaolin pipe fragments wrought nails black/olive glass</td>
</tr>
</tbody>
</table>
Figure 57. Number of Sherds Per 100 Years for Phases Identified on Site 9BN17.
The succeeding Middle Woodland component may have been at least somewhat more substantial. Diagnostic artifacts signaling this component include Deptford and Refuge ceramics, many of which occur in both the Deptford I (400 B.C. to A.D. 300) and Deptford II (A.D. 300 to 500) phases of the period. However, DePratter (1991:11) places the Deptford Linear Check Stamped type in the earlier phase, and Deptford Complicated Stamped in the later division. The higher number of sherds per 100 years for the Deptford II phase is due to the fact that this phase is much shorter than the earlier Deptford I division (spanning 200 years and 700 years, respectively).

Strict adherence to DePratter’s (1991:11) chronological framework would have the Late Woodland component on the Lewis Mound site divided into two distinct occupations, one during the Walthour phase (A.D. 500 - 600) and the second in the succeeding Wihnington phase (A.D. 600 - 1000). In this scenario, the intensity of both occupations would be quite low, as indicated in Figure 57. This is, of course, quite plausible, as relatively few components from these phases have been identified on the reservation to date, and use of the area may have been slight. However, if we attribute the Late Woodland pottery to a single occupation at the transition between the two phases, the intensity of settlement would be considerably higher.

In any case, the use of the Lewis Mound site seems to have increased with the transition to the brief Saint Catherines phase of the Early Mississippian period (A.D. 1000 - 1200). Diagnostic artifacts associated with this settlement of the Lewis Mound site include Saint Catherines Plain, Cord Marked, and Net Marked ceramics. The two triangular points may also date to this interval.

The increased intensity of activity on 9BN39 during the Saint Catherines phase serves as a prelude to what appears to be the primary occupation of the Lewis Mound site, during the Middle Mississippian Savannah period (A.D. 1200 to 1325). As was previously noted, the absence of check stamped pottery suggests that the assemblage dates predominantly to the early portion of the period. However, the presence of significant amounts of complicated stamped ceramics is associated more with the later Savannah II phase. Possibly, the Savannah settlement of the site occurred somewhere near the break between these two phases, which DePratter places at A.D. 1300. Crook (1986:37) does not offer any divisions of the Savannah period in his alternative chronology for the Mississippian, but he does assert that Savannah developed directly from Wilmington at around A.D. 900.

Somewhat disconcerting is the fact that much of the Savannah assemblage is made up of plain pottery, which is generally a poor chronological marker. However, both Savannah Cord Marked and Complicated Stamped occur in relatively substantial quantities on the site. Moreover, Savannah components appear to be quite frequent on Fort Stewart, particularly in the area surrounding the Lewis Mound site (Miller et al. 1983; Pluckhahn 1995b).

The Lewis Mound itself cannot be unequivocally associated with the Savannah phase occupation of the site, but the intensity of settlement at this time suggests that this is the case. Additional circumstantial evidence for a Savannah date for the mound comes from settlement data from the surrounding area. The Savannah phase occupation of the immediate interior sections of the Coastal Zone, including Fort Stewart, is more substantial than that from any other prehistoric period (Crook 1986; Fish 1976; Miller et al. 1983; Pluckhahn 1995b; Hally et al. 1975).
Further evidence for an Early or Middle Mississippian date for the mound is provided by previous investigations of mound sites in the region. The mound appears similar in size, shape, and stratigraphy to several Savannah and Saint Catherines period mounds in Chatham County which were excavated by WPA crews in the 1930s and 1940s. For example, a roughly circular sand burial mound 16.2 m (53 ft) in diameter and 0.8 m (2.5 ft) high was excavated on site 9CH18 in 1940 (DePrater 1991:79). Caldwell and McCann (n.d.a.) described the stratigraphy of the mound as "...a homogenous light tan sand built up on an old premound surface marked by a sand organically stained." DePrater's (1991:80) reanalysis suggests that the mound was constructed during the late Saint Catherines or early Savannah period.

Similar stratigraphy was noted at 9CH19, where a mound 16.8 m (55 ft) in diameter and 0.9 m (3 ft) high was completely excavated by WPA archaeologists. This mound was also constructed in either the Saint Catherines or Savannah period (DePrater 1991:91).

Finally, two comparably sized mounds were excavated at the Dotson site (9CH10). Here too, Caldwell and McCann (n.d.b.) reported no distinct fill zones in the mound stratigraphy, but did note several layers of old humus. DePratter (1991:108) dates both mounds at the site to the Saint Catherines period.

To the south and west of Fort Stewart, Moore (1898) reported 39 similar small sand mounds on a 131 mile stretch of the Altamaha River. These mounds ranged from 7-20.7 m (23-68 ft) in diameter, and from 0.35-2.1 m (1.2-7 ft) high. Most, however, fell in the range of 0.3-1 m (1-3 ft) high and 6-12.2 m (20-40 ft) in diameter. Unfortunately, few of these mounds can be dated with any certainty. However, Moore did recover a Savannah Complicated Stamped vessel at the Lake Bluff site, only 34 miles southeast of the Lewis Mound. Moore also reported complicated stamped sherds, as well as shell pins and beads, from a mound at Tillman's Ferry, a considerable distance into the Pine Barrens in Appling County.

Of course, only excavation within the mound, or carbon dating of shell and bone samples recovered by Professional Analysts, can conclusively demonstrate the age of the Lewis Mound. These options were not available to us. Nevertheless, there is considerable evidence to suggest that the mound is associated with the Savannah component on the site.

The final prehistoric occupation of the site occurred during the Irene period, as indicated by the presence of Irene Plain and Complicated Stamped sherds. The absence of Irene Incised ceramics suggests that this habitation dates to the 100 year Irene phase (A.D. 1325 to 1425). Only three Irene sherds were identified on the site, indicating that this occupation of the site was ephemeral.

Historic Occupations

Although there is evidence of modern activities on the Lewis Mound site, the only true habitation of the site during the historic period appears to have occurred during the colonial era. Prior to this testing, this component was unknown.

As was mentioned in the previous section, this eighteenth century occupation of the site is marked by a variety of artifacts, but the most temporally sensitive of these are ceramics and kaolin pipe stem fragments. The only identifiable ceramic, a fragment of combed yellow, lead glazed slipware, was manufactured in the middle and late eighteenth century. The range for this sherd overlaps a mean date of 1774 for the sample of pipe stem fragments.
Additional evidence for a middle to late eighteenth century date for this component comes from an early map of the area by DesBarres (1780). This map shows a few settlements in the vicinity of the Lewis Mound site (Figure 58). It is possible that the eighteenth century component on the Lewis Mound represents the remains of one of these settlements. Another eighteenth century component on site 9BN38, approximately one kilometer east of the Lewis Mound, could represent residue from one of settlements depicted in the DesBarres map.

If this analysis is correct, the historic component on the Lewis Mound site probably represents one of the early settlements in the Barbecue Creek area. As was noted in the background section, the project area appears to fall at least partially within the limits of a 250 acre tract that was surveyed for (but never granted to) William Wainwright in 1750 (Hemperly 1972:72). One source relates that the tract was sold to Robert Kirkwood, and was later acquired by John Jagger (Miller et al. 1983:96). However, Hemperly's (1972:72) abstract from the deed notes only that Wainwright sold the property to Jagger. In any case, Jagger gave the property to Elizabeth Shillings in 1767 (Hemperly 1972:72; Miller et al. 1983:96). Shillings acquired a number of landholdings around this same time (Hemperly 1972). Presumably, the land belonged to Shillings during most of the late eighteenth century, but there is little surviving documentary evidence for this period.

The settlement may have been a small farmstead, but most of the land in the Barbecue Creek area was used only to provide timber for saw mills or the naval stores industry (Miller et al. 1983:20). The site would appear to have been abandoned by the early nineteenth century, given the absence of later ceramic types. Neither Shillings, nor any of the previously mentioned owners of the property are listed in the Bryan County census for 1830 (Register 1970).
OCR Dating

Soil samples were retrieved from various stratigraphic levels in a few of the test units on site 9BN39. Five samples from Test Unit 5 were submitted to Archaeology Consulting Team, Inc. for determination of the Oxidizable Carbon Ratios (OCR). This is a relatively new procedure that has the potential to date charcoal found in soil. Detailed accounts of the procedure can be found in two articles by Frink (1992, 1994).

The first sample, from the base of the plowzone, produced a date of 208 years before present (YBP) (1950), or A.D. 1742. The second, from the top of Stratum II (the artifact rich occupation zone), dated to 1012 YBP, or A.D. 938. A date of 2660 YBP, or 710 B.C., was obtained for a sample from the middle of this zone. A sample from the interface of Strata II and III produced a date of 4719 YBP, or 2769 B.C. Finally, a sample from the upper portion of Stratum III yielded a date of 6230 YBP, or 4280 B.C.

Frink (personal communication 1996) reports that these OCR date estimates may be somewhat older than might be expected, due to biological changes to the charcoal in the interval between excavation and analysis. Nevertheless, the dates may provide a rough terminus a quo. The first date generally corresponds to the estimate for the eighteenth century occupation of the Lewis Mound. The second, from the main occupation zone, dates to the Wilmington period, several centuries earlier than would be expected based on the predominately Savannah period ceramic assemblage. However, the prehistoric components are considerably mixed stratigraphically. In addition, many of the more recent Savannah artifacts may have been displaced to lower levels by bioturbation. The third date, from the middle portion of the occupation layer, falls within the range of the Early Woodland period. The fourth and fifth age estimates predate the earliest recognized occupations of the site.

Intrasite Settlement and Artifact Distribution Patterns

Artifact distribution data from shovel tests and test units on site 9BN39 allows for a preliminary appraisal on intrasite settlement patterns and activity areas. Unfortunately, the limited scale of our testing does not provide the resolution that is necessary for the delineation of individual structures. However, the data does permit a more general reconstruction of the distribution of certain components (Figure 59).

In terms of diagnostic artifacts, the Late Archaic component on the site is limited to Test Units 3 (bannerstone fragment) and 4 (Saint Simons sherds). The separation of these two areas implies that the artifacts were deposited on distinct occasions.

Refuge and Deptford series ceramics were distributed lightly across much of the site, but the density of both types was greatest in Units 3 and 7, to the south of the mound. A second distinct activity area associated with the Deptford occupation of the site is located in the vicinity of a shovel test at grid point N570 E520.

The Wilmington period occupation of the site appears to be concentrated in an area to the north of the mound. This observation is based partly on the distribution of grog tempered
sherds in shovel tests, but predominantly on the relatively higher densities of Walthour and Wilmington series pottery in Test Units 2 and 6. Unit 2, to the northeast of the mound, produced higher proportions of both Walthour and Wilmington sherds and would appear to have been the center of Late Woodland activities on the site.

The distribution of Saint Catherines sherds overlaps with that of Wilmington, suggesting the possibility of contemporaneity. Saint Catherines pottery was most dense in Units 1, 2, and 6. This forms a broad area to the north, and to the immediate southwest of the Lewis Mound. Like Wilmington, the greatest concentration of Saint Catherines pottery was in Unit 2.

Although Savannah sherds were common across the Lewis Mound site, they reached relatively higher densities in Units 3, 5, and 7. Together these three units form a broad area of concentration about 20-40 m south of the mound. This corresponds to the concentration noted in the shovel test data. The density of Savannah sherds in this area suggests that this was the location of one or more structures.

Interestingly, the area immediately surrounding the Lewis Mound (particularly to the south, as evidenced by Test Unit 4) exhibits a relatively low density of Savannah sherds. If indeed the mound is associated with the Savannah occupation of the site, it would appear that this area was left unoccupied. Although it is clearly speculative, it seems plausible that this portion of the site served as a small plaza or garden plot.

The separation between the concentrations of Savannah and Saint Catherines pottery is notable, as it contrasts with Crook’s (1978) data from the Kennan Field and Bourbon Field sites. There, the two pottery types were correlated spatially. Crook (1986) cites this as evidence that the series were in use at the same time. The Lewis Mound data would seem to contradict this interpretation.

What appears to have been a brief Irene period occupation of the Lewis Mound site is limited to the area of Test Unit 3. The limited spatial distribution of Irene sherds offers additional evidence that this was a transitory settlement.

Finally, historic artifacts were found in a few test units, but the greatest concentration by far was in Unit 7. In addition, a large quantity of what is presumably historic faunal remains was recovered from a nearby shovel test at grid location N480 E520. This concentration of artifacts, and particularly brick and nails, signals that an eighteenth century structure was located on this portion of the site.
Figure 59. Spatial Concentrations of Constituent Components on the Lewis Mound Site as Evidenced by Artifact Distribution Data.
CHAPTER 5
Survey Results

Archaeological survey was conducted on 100 acres immediately surrounding the Lewis Mound site. This survey resulted in the identification of three previously unreported archaeological sites. Site locations are presented in Figure 2. The following section provides a brief description of the three sites, and a summary of our investigations. Copies of the state site forms are included in Appendix B.

Site 9BN133

Site 9BN133 is located on a long, low ridge to the west of the Lewis Mound site (Figure 60). Vegetation on the site consists of mixed hardwoods and pines, with moderately dense understory. Adjoining the site to the west is a large flowing creek that does not appear on the topographic map of the area. To the east, separating this site from 9BN39, is a small intermittent stream or swamp.

The site includes both prehistoric and historic components. The former consists of a large and locally heavy artifact scatter. The historic component on the site is limited to a ditch and earthen embankment of uncertain purpose.

The site was discovered as the landform was shovel tested at 30 m intervals. Our transects were oriented north-south with the center of the ridge top. However, it became apparent that the heaviest artifact density was on the western margin of the landform, and we expanded our testing in this direction in order to investigate the site more thoroughly. Attempts to narrow the shovel test interval to 15 m were abandoned when the considerable size of the site became apparent. Ultimately, the site proved to be roughly 300 m long and 100 m wide.

A total of 80 shovel tests was excavated on site 9BN133. Thirty-two of these were positive, producing prehistoric lithics and ceramics. Table 8 lists these positive tests, together with their stratigraphy. In general, the soil profile consisted of 15-30 cm of grey brown sand over 10-15 cm of yellow brown sand, all over a lighter colored brown sand. Sandy clay subsoil was encountered in the lower depths of many shovel tests. Artifacts were usually found in the topsoil or second soil horizon, but occasionally appeared to come from somewhat deeper.

Artifact density varied considerably between tests, reaching a maximum of thirty in Shovel Test 30. Prehistoric components on the site can be dated to the Late Archaic, Early and/or Middle Woodland, Early Mississippian, and Middle Mississippian periods, as indicated by the presence of Saint Simons, Refuge, Deptford, Saint Catherines, and Savannah series pottery (Figure 61).
Figure 60. Map of Site 9BN133.
<table>
<thead>
<tr>
<th>Shovel Test #</th>
<th>Artifact(s)</th>
<th>Soil Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-22 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-37 mottled grey/yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37-66 mottled white sand/red brown clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 chert late reduction flakes 1-3 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 residual sand/grit tempered</td>
</tr>
<tr>
<td>1 (0-30)</td>
<td></td>
<td>0-20 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20-35 yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35-50 orange sandy clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 residual sand/grit tempered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Savannah Plain</td>
</tr>
<tr>
<td>2 (0-30)</td>
<td></td>
<td>0-18 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-45 yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-58 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 chert late reduction flake 1-3 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 residual sand tempered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Savannah Check Stamped</td>
</tr>
<tr>
<td>3 (0-10)</td>
<td></td>
<td>0-23 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23-50 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-73 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Deptford Simple Stamped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 residual fiber tempered</td>
</tr>
<tr>
<td>4 (0-45)</td>
<td></td>
<td>0-14 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-71 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71-80 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>80 orange sandy clay</td>
</tr>
<tr>
<td>5 (0-30)</td>
<td></td>
<td>0-22 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-42 yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42-45 orange clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 residual sand/grit tempered</td>
</tr>
<tr>
<td>6 (0-35)</td>
<td></td>
<td>0-16 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-70 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-75 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>75 orange sandy clay</td>
</tr>
<tr>
<td>7 (0-35)</td>
<td></td>
<td>0-22 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-45 yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-58 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 chert late reduction flake 1-3 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 residual sand tempered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Savannah Check Stamped</td>
</tr>
<tr>
<td>8 (10-30)</td>
<td></td>
<td>0-23 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23-50 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-73 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>73 orange sandy clay</td>
</tr>
<tr>
<td>9 (0-30)</td>
<td></td>
<td>0-18 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-45 yellow brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-58 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 chert late reduction flake 1-3 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 residual sand tempered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Savannah Check Stamped</td>
</tr>
<tr>
<td>10 (10-35)</td>
<td></td>
<td>0-14 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-71 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71-80 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>80 orange sandy clay</td>
</tr>
<tr>
<td>11 (15-25)</td>
<td></td>
<td>0-16 dark grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-70 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-75 white sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>75 orange sandy clay</td>
</tr>
<tr>
<td>12 (0-10)</td>
<td></td>
<td>0-23 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23-56 yellow sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 residual sand/grit tempered</td>
</tr>
<tr>
<td>13 (22-45)</td>
<td></td>
<td>0-22 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-50 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-60 orange sandy clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Saint Simons Plain</td>
</tr>
<tr>
<td>14 (0-16)</td>
<td></td>
<td>0-22 grey brown sand loam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-50 light brown sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-60 orange sandy clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Savannah Plain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Refuge Simple Stamped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Savannah (?) Complicated Stamped</td>
</tr>
<tr>
<td>Shovel Test # (Artifact Depth)</td>
<td>Soil Profile</td>
<td>Artifact(s)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>15 (10-60) 0-24 dark grey sand loam</td>
<td>1 chert late reduction flake <1 cm</td>
<td></td>
</tr>
<tr>
<td>24-44 mottled yellow/grey sand</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>44-80 yellow brown sand</td>
<td>4 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>80-100 white sand</td>
<td>4 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>16 (45-55) 0-35 overburden from adjacent ditch</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>35-45 grey brown sand loam</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>45-60 yellow brown sand</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>60-80 pale yellow sand</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>17 (10-30) 0-17 dark grey sand loam</td>
<td>1 chert late reduction flake <1 cm</td>
<td></td>
</tr>
<tr>
<td>17-33 mottled yellow/grey sand</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>33-56 light yellow sand</td>
<td>2 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>56-70 white sand</td>
<td>2 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>18 (20-75) 0-16 dark grey brown sand loam</td>
<td>1 chert early reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>16-30 mottled grey/yellow brown sand</td>
<td>1 utilized chert flake</td>
<td></td>
</tr>
<tr>
<td>30-80 yellow sand</td>
<td>5 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>80-100 white sand</td>
<td>5 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>19 (34-44) 0-26 mottled yellow/brown sand</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>26-34 grey brown sand</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>34-75 light brown sand</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>>75 orange sandy clay</td>
<td>1 chert late reduction flake 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>20 (10-30) 0-17 dark grey sand loam</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>17-61 yellow sand</td>
<td>1 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>>61 mottled yellow/orange sand</td>
<td>1 grit tempered (possible Irene) plain</td>
<td></td>
</tr>
<tr>
<td>21 (20-40) 0-18 grey brown sand loam</td>
<td>2 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>18-40 mottled grey/brown yellow sand</td>
<td>2 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>40-63 mottled white/yellow sand</td>
<td>2 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>22 (22-60) 0-22 grey brown sand</td>
<td>2 chert late reduction flakes 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>22-60 yellow brown sand</td>
<td>2 chert late reduction flakes 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>60-70 white sand</td>
<td>2 chert late reduction flakes 1-3 cm</td>
<td></td>
</tr>
<tr>
<td>23 (20-30) 0-18 grey brown sand loam</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>18-84 pale brown sand</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>>84 mottled white sand/range clay</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>24 (0-15) 0-17 dark grey sand loam</td>
<td>2 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>17-60 light brown sand</td>
<td>2 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>60-69 white sand</td>
<td>2 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>25 (5-15) 0-12 dark black sand loam</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>12-26 yellow brown sand</td>
<td>1 residual sand/grit tempered</td>
<td></td>
</tr>
<tr>
<td>26-50 white sand</td>
<td>1 Savannah Plain</td>
<td></td>
</tr>
<tr>
<td>26 (0-20) 0-20 grey brown sand loam</td>
<td>1 sand tempered residual</td>
<td></td>
</tr>
<tr>
<td>20-35 yellow brown sand</td>
<td>1 sand tempered residual</td>
<td></td>
</tr>
<tr>
<td>35-45 white sand</td>
<td>1 sand tempered residual</td>
<td></td>
</tr>
<tr>
<td>27 (0-40) 0-19 grey brown sand loam</td>
<td>1 utilized chert flake</td>
<td></td>
</tr>
<tr>
<td>19-31 mottled grey/yellow brown sand</td>
<td>1 utilized chert flake</td>
<td></td>
</tr>
<tr>
<td>31-50 yellow sand</td>
<td>1 utilized chert flake</td>
<td></td>
</tr>
<tr>
<td>50-67 mottled white/yellow sand</td>
<td>1 utilized chert flake</td>
<td></td>
</tr>
<tr>
<td>28 (0-20) 0-20 grey brown sand loam</td>
<td>1 Savannah Plain (rim)</td>
<td></td>
</tr>
<tr>
<td>20-35 yellow brown sand</td>
<td>1 Savannah Plain (rim)</td>
<td></td>
</tr>
<tr>
<td>35-45 white sand</td>
<td>1 Savannah Plain (rim)</td>
<td></td>
</tr>
<tr>
<td>Shovel Test #</td>
<td>Soil Profile</td>
<td>Artifact(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 29 (0-63) | 0-8 dark grey brown sand loam
8-20 mottled grey/yellow brown sand
20-45 yellow sand
45-63 mottled yellow/white sand
>63 orange sandy/white clay | 1 quartz early reduction flake <1 cm
4 quartz early reduction flakes 1-3 cm
2 quartz late reduction flakes <1 cm
4 quartz late reduction flakes 1-3 cm |
| 30 (0-55) | 0-30 grey brown sand loam
30-58 yellow brown sand
58-70 white sand | 4 chert late reduction flakes <1 cm
5 chert late reduction 1-3 cm
1 utilized chert flake
5 Savannah Plain
3 unidentified (possibly Deptford) plain |
| 31 (10-50) | 0-22 dark grey/black sand loam
22-30 yellow grey sand
30-70 yellow sand
70-79 white sand | 1 chert early reduction flake 1-3 cm
1 chert late reduction flake 1-3 cm
1 Saint Catherines Plain |
| 32 (0-28) | 0-28 dark grey brown sand loam
28-55 yellow sand
55-65 white sand | 1 chert late reduction flake 1-3 cm
1 residual sand/grit tempered |

A-B) Savannah Complicated Stamped; C) Savannah (?) Check Stamped; D-E) Refuge/Deptford Simple Stamped;
F) Savannah Plain with mending hole. (A. ST10; B. ST8; C. ST9; D-E. ST15; F. ST21)

Figure 61. Selected Artifacts from Site 9BN133. Shown actual size.
The historic component on the site includes a long ditch about 3 m wide. The depth of this excavation varies but approaches 2 m along much of its length. Backdirt has been placed adjacent to the ditch, usually on the western side. To the west of the ditch, adjacent to the creek, are two borrow areas and an earthen embankment (Figure 62). The latter picks up again on the other side of the creek, and continues into the surrounding swamp. We were unable to cross the creek, and therefore could not follow the feature.

Figure 62. Recording Site 9BN133. View is to the north, with the creek and embankment in background.

It is difficult to determine the function for these excavations and earthworks, or even if they are related. The ditch may have simply been excavated to drain the ridge, either for agriculture or perhaps for mosquito control. The borrow pits were likely excavated to provide dirt for the embankment, which may be the remnants of a dam or dike (but could also simply be an old road bed). There were no indications of a mill or similar type of industry on the site. No historic artifacts were recovered in any of our shovel tests.

Although they may ultimately prove only to be the remnants of a road, or even relatively recent military operations, these earthworks should be investigated further. There is a possibility that they are associated with one of the early industries in the area, particularly rice cultivation or timber production. The historic component on the site cannot be adequately evaluated on the basis of the current information, and should be considered potentially eligible to the National Register.
The prehistoric components on the site also merit additional study. Artifact density is relatively high across the site as a whole. Much higher densities in a few shovel tests (for example, the concentration of lithics in Shovel Test 29) suggest the possibility that discrete activity areas may be present and preserved on the site. In addition, there is a strong possibility that features could be present.

Both of the components on site 9BN133 have the potential to yield significant, new information. We therefore recommend that the site is potentially eligible to the National Register. Site 9BN133 should be protected until testing can be conducted to better assess its integrity and research potential.

Site 9BN134

Site 9BN134 is located to the south of the Lewis Mound, on the edge of the same broad terrace plain. Although it is undoubtedly related to the Lewis Mound site, this artifact scatter was separated by about 60 m and several sterile shovel tests, so we elected to designate it as a distinct site.

The site was discovered while shovel testing at 30 m intervals on two transects oriented with the edge of the landform. Subsequently, we tightened the interval to 15 m intervals on these transects across the site, as well as on two perpendicular lines. Six of the 22 total shovel tests were positive.
Table 9 lists the artifacts and stratigraphy in these positive tests. As might be expected, the soil profiles were similar to those that were observed on the Lewis Mound site. Generally, these consisted of 15-30 cm of grey sand loam over about 20 cm of yellow sand, all on top of a white sand layer. A few tests intercepted sandy clay subsoil at 70 or more centimeters below the ground surface. Artifacts were confined to the two upper soil horizons.

Table 9. Shovel Test Data for Site 9BN134.

<table>
<thead>
<tr>
<th>Shovel Test # (Artifact Depth)</th>
<th>Soil Profile</th>
<th>Artifact(s)</th>
</tr>
</thead>
</table>
| 1 (0-18) | 0-18 light grey sand loam
18-40 pale yellow sand
40-60 white sand | 1 residual clay tempered |
| 2 (20-40) | 0-22 light grey sand loam
22-62 light yellow brown sand
62-75 white sand
>75 orange sandy clay | 1 chert late reduction flake <1 cm |
| 3 (0-30) | 0-28 light grey sand loam
28-48 mottled grey/white sand
48-62 white sand | 3 Savannah Plain
1 residual sand/grit tempered
1 chert late reduction flake 1-3 cm |
| 4 (0-15) | 0-15 light grey sand loam
15-30 pale yellow sand
30-50 white sand | 1 Savannah (?) Complicated Stamped |
| 5 (0-20) | 0-20 grey sand loam
20-30 light yellow sand
30-40 white sand
40-45 orange clay | 2 residual sand/grit tempered |
| 6 (20-35) | 0-13 grey sand loam
13-35 light grey sand
35-65 mottled grey/yellow sand
65-70 white sand
70-73 orange sandy clay | 2 Savannah Plain
1 chert late reduction flake <1 cm |

Artifact density was relatively low, with a high of five artifacts in Shovel Test 3. Saint Catherines and Savannah series pottery indicate that the site was occupied during the Early and Middle Mississippian periods.

Site 9BN134 appears to be associated with the primary occupations of the adjacent Lewis Mound site. However, the low artifact density on this site signals that it was probably the scene of brief and specialized activities, rather than any type of habitation. As such, it is unlikely to contain the type of features that would be expected on more intensively occupied sites. Due to its limited research potential, we recommend that site 9BN134 is ineligible to the National Register of Historic Places.
Site 9BN135 consists of very low density artifact scatter to the southeast of the Lewis Mound site. It too was identified while shovel testing the edge of the broad terrace.

Only two of the 12 shovel tests excavated in the area of the site were positive. As indicated in Table 10, one of these tests yielded two Savannah sherds, while the second produced a Late Archaic stemmed projectile point manufactured from Coastal Plain chert (Figure 63).

The low artifact density on site 9BN135 indicates that both occupations of the site must have been ephemeral. Features are not typically associated with such occupations. Apart from the possible recovery of additional diagnostic artifacts, further testing of the site would be unlikely to produce any more substantive information. We therefore recommend that site 9BN134 is ineligible to the National Register.

Figure 63. Late Archaic Stemmed PP/K from ST 2 on 9BN135. Shown actual size.
Table 10. Shovel Test Data for Site 9BN135.

<table>
<thead>
<tr>
<th>Shovel Test # (Artifact Depth)</th>
<th>Soil Profile</th>
<th>Artifact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (18-32)</td>
<td>0-18 mottled slope wash</td>
<td>2 Savannah Plain (1 rim)</td>
</tr>
<tr>
<td></td>
<td>18-32 grey sand loam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-50 yellow brown sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-60 white sand</td>
<td></td>
</tr>
<tr>
<td>2 (45-55)</td>
<td>0-26 grey silty sand</td>
<td>1 chert Late Archaic stemmed PP/K</td>
</tr>
<tr>
<td></td>
<td>26-50 yellow brown sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-60 red sandy clay</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 6
Regional Context for the Survey and Testing Results

The results of this survey and testing, when placed in the broader context of the region as a whole, can help illuminate trends in the settlement of the Coastal Zone and Coastal Plain. Comparative data for the region is available from the computer database of the Georgia Archaeological Site File. This data is obviously flawed by survey bias and incomplete or faulty component identification. Nevertheless, it provides useful information for making general comparisons. Distribution data for components recorded as Late Archaic, Early Woodland, Deptford, Wilmington, Saint Catherines, Savannah, and Irene is presented in Figures 64-70. Mound sites are circled on these figures, but it should be noted that the mound is not necessarily associated with the period in question (such information is often difficult to ascertain from site forms). Figure 71 documents the locations of eighteenth century historic sites.

Two Saint Simons components are recognized in the immediate project area, one on the Lewis Mound site and a second on site 9BN133. Evidence of an additional, albeit more transitory use of the project area is provided by a Late Archaic stemmed point from 9BN135. Although the density of artifacts associated with these components is slight, taken together they would seem to indicate that the project area was consistently utilized.

Figure 64 presents general location data for sites in the Coastal Plain that have been identified as having Late Archaic components. As the figure illustrates, sites from the period are prevalent along the Coast, where they are frequently associated with large shell middens. Most of the sites in the immediate interior, like those in the project area and across Fort Stewart, consist of smaller, low density artifact scatters (Fish 1976; Miller et al. 1983; Thomas et al 1995; Hally et al. 1975). Possibly, this reflects seasonal utilization of the area for hunting and plant collecting activities by populations based more permanently on the mainland shore and barrier islands. As our survey demonstrates, however, additional components from the period will be identified in the interior as more investigations take place. Moreover, as Elliott and Sassaman (1995) note, greater attention must be placed on locating shell middens associated with freshwater resources in the interior, particularly in the Ogeechee drainage.

Early and Middle Woodland Refuge components were identified on two sites in the project area, including the Lewis Mound and site 9BN133. Again, both of these components appear to be insubstantial. The site files search reveals that few Early Woodland components have been recorded in the region in general (Figure 65). One exception is the Savannah area, where a small cluster is apparent. This is probably a reflection of the intensity of WPA work in the area. The dearth of Refuge sites in the interior of the Coastal Zone may reflect a genuinely low level of occupation in the area. However, it seems more likely that this reflects problems with the recognition of chronological markers for the Early Woodland period.

Middle Woodland Deptford components were noted on the Lewis Mound site and site 9BN133. Both appear to be slightly more substantial than those of the preceding periods, suggesting increased utilization of the project area. Further evidence for this interpretation comes from previous surveys on the reservation, which have resulted in the identification of 21 components from the phase (Thomas et al. 1995).
Figure 64. Distribution of Late Archaic Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 65. Distribution of Early Woodland Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 66. Distribution of Deptford Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 67. Distribution of Wilmington Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 68. Distribution of Saint Catherines Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 69. Distribution of Savannah Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 70. Distribution of Irene Components in the Coastal Plain and Coastal Zone of Georgia. The circled dots represent mound sites. Arrow points to approximate location of project area.
Figure 71. Distribution of Eighteenth Century Historic Components in the Coastal Plain and Coastal Zone of Georgia. Arrow points to approximate location of project area.
In addition, Deptford components are more frequently recorded in the region as a whole. As Figure 66 illustrates, sites bearing Deptford sherds are common not only on the Coast, but also in the interior. Hally and his colleagues (1975:120) identified a number of Deptford components in the interior sections of Long and McIntosh Counties. The cluster of components of this type further into the interior, in the Big Bend region of the Ocmulgee River and areas to its south, reflects the intensity of survey in this portion of the Coastal Plain, but may also indicate an increase in population during this interval (Blanton 1979; Snow 1977; Kirkland 1994). Meanwhile, surprisingly few Deptford components have been identified on surveys of Skidaway Island, suggesting the possibility that the barrier islands were less intensively settled (DePratter 1979; Pluckhahn 1995a). As others (e.g. Anderson 1975) have noted, this evidence contradicts Milanich's (1971) suggestion that Deptford populations were based on the Coast, utilizing the interior only on a seasonal basis.

Late Woodland, Wilmington series pottery was recognized on the Lewis Mound site, but not on any of the other sites identified in the project area. Similarly, other surveys on Fort Stewart have identified only a few Wilmington components (Thomas et al. 1995).

Surveys in the interior surrounding Fort Stewart have resulted in a few, but perhaps not many Wilmington sites (Fish 1976; Hally et al. 1975). The distribution map for this component type (Figure 67) confirms that settlement continued in the interior of the Coastal Zone to a certain extent. However, the most intensive settlement appears to have been on the mainland shore and barrier islands. Surveys on Skidaway Island, for example, have documented relatively heavy Wilmington occupation in the area (DePratter 1979; Pluckhahn 1995a).

Milanich (1971) suggests that maize had been introduced to the coast at some point during the Wilmington phase. The distribution of components from the period on soil types that would be more amenable to horticulture may support this hypothesis (DePratter 1978; Pluckhahn 1995a). However, there are no strong indications of major sociopolitical change during the period. Possible Wilmington burial mounds have been identified (Moore 1897), but these associations are far from secure (Crook 1978).

Wilmington is not commonly recognized as a component type in the interior beyond the Coastal Zone. Instead, the Late Woodland period in the adjacent portions of the Coastal Plain proper is distinguished by cord marked pottery of the Ocmulgee series (Snow 1977). This type is tempered with sand, rather than grog. In addition, there are differences in rim treatments between the Wilmington and Ocmulgee types (Snow 1977; Stephenson 1990). The geographic setting of Fort Stewart suggests that it may be able to provide some important information on the range of these two types.

Saint Catherines components, which date to the Early Mississippian, were observed on three of the four sites in the project area. This total includes a fairly substantial occupation on the Lewis Mound. These results suggest that the level of settlement in the area increased over that of the preceding period. However, this finding is not substantiated by the reports of previous investigations on Fort Stewart, which have failed to identify any other Saint Catherines components (Miller et al. 1983; Thomas et al. 1995). Furthermore, as Figure 68 demonstrates, few Saint Catherines components have been recorded for the region in general.
The paucity of Saint Catherines components may be due to several factors. First, the phase was recognized only relatively recently. Next, some researchers have been slow to accept the phase. Finally, as it is currently understood, the period lasts only 200 years.

The lack of settlements notwithstanding, a number of small sand burial mounds on the coasts of South Carolina and Georgia are attributed to the Saint Catherines period (Caldwell 1971; DePratter 1991; Thomas and Larsen 1979; Waring 1968). Based on the identification of high status burials in some of these mounds, it has been suggested, that the Saint Catherines period was marked by a shift in sociopolitical organization, such that status was ascribed rather than achieved (Caldwell 1971; Brooks et al. 1982; DePratter and Howard 1980). If this is true, some nucleation of settlement might also be expected. This could, at least in part, help explain the lack of Saint Catherines sites in interior areas of the Georgia Coastal Zone.

More concrete evidence for changes in sociopolitical organization have been identified with the Savannah period. This evidence includes pronounced increases in the settlement of the Coastal Zone (Figure 69). A similar pattern holds true across much of the state in general (Williams 1994:41).

These changes are evident in the results of our survey and testing. Savannah components were identified on each of the three sites discovered in the project area. In addition, this appears to be the primary occupation on the Lewis Mound site. The limited surveys that have been conducted elsewhere on Fort Stewart to date indicate that there was a dramatic increase in the settlement of the area during the Savannah period (Figure 70).

Because the site distribution data for the Savannah period occupation in the area is much richer, it is possible to offer more specific theories on how the settlement system operated at this time. Crook (1978; 1986), for example, has offered a fairly detailed annual round model for settlement of the Coastal Zone during the Mississippi period, based largely on observations of the Guale during the early historic era.

Crook's model consists of four basic parts. He suggests that settlements consisting of matrilineal kin groups were located adjacent to estuaries during the winter months, when shellfish are generally larger and free of disease. For the spring and early summer, Crook proposes that there was a dispersal to swidden plots in oak forests. While the crops were in production, there may have been a continued reliance on molluscs, but the diet would have been supplemented by fish and stored foods. Later in the summer, as the swidden crops matured and more fish became available, populations would have aggregated in "strategically located town sites" (Crook 1986:18). During the fall, there was another dispersal into the oak forests for the collection of acorns and hickory nuts, and for the hunting of deer, which also likely clustered around these resources in the autumn.

Four levels of settlement correspond to the model (Crook 1986:29). The smallest, consisting of one or two nuclear families, is associated with the spring agricultural season. The second settlement type was composed of matrilineal segments of 20 or so individuals. This type is associated with the fall acorn and deer hunting locations. Crook suggests that a similar residential population was in place in the estuarine areas during the winter. Larger town sites, situated in the most productive areas, were probably permanently occupied by a chief, his
family, and segments of his matrilineal kin group. These would have been the locations of population aggregation at the time of the late summer harvest, and for other periodic feasts throughout the year.

Crook's model can be applied, with some modification, to the Savannah settlement data from Fort Stewart. Given the limited amount of survey and testing that have been conducted, this application must be considered tentative.

The Lewis Mound site, as the only known mound site and the largest and most dense artifact scatter on the reservation, likely represents the permanent residence of a chief and his family. The site is located in an area that is now, and probably was in the past, covered by nut-producing hardwoods such as oaks and hickories. Soils on the site are rich and, although excessively drained, could have supported swidden cultivation during the summer months when rainfall is at its highest. Moreover, the site is located within an easy day's travel of the estuarine resources to the east of the reservation.

The Lewis Mound site probably served as the center of aggregation during the late summer and fall months. However, the data from Fort Stewart suggests that this aggregation occurred as a cluster of sites in the immediately surrounding area, rather than as a single very large town site, as Crook seems to suggest. In particular, sites 9BN133 and 9BN90, both just to the west of the Lewis Mound, appear to be fairly dense artifact scatters that may be related to the Savannah period occupation of the Lewis Mound.

As Figure 72 illustrates, a number of other Savannah components have been identified along the Canoochee and Ogeechee Rivers on the eastern half of the reservation. With the exception of the two previously mentioned sites adjacent to the Lewis Mound, most of these appear to be somewhat smaller and lower in artifact density. Following Crook's model, it seems likely that these represent the residences of single families during the summer months. These smaller sites were probably located adjacent to dispersed swidden plots. In addition, many of these sites are located on small hardwood hammocks that could have also provided nuts in the autumn.

Few sites have been identified on the smaller tributaries and broad upland areas in the region surrounding the Lewis Mound (and this related cluster of Savannah components). Small sites associated with plant collection and hunting might be expected in these areas. The current paucity of such sites in the database is probably the result of survey bias, as well as the fact that these sites may consist only of isolated projectile points or low density artifact scatters.

The few Savannah components located upstream on the Canoochee River and Canoochee Creek, which appear to be low in artifact density, may represent additional dispersed swidden plot habitations. However, these are some distance from the cluster of sites on the eastern portion of the reservation. Possibly, a better candidate for a large aggregation point similar to the Lewis Mound will be eventually found closer to these sites. It is also possible that such a site once existed but has been destroyed. This possibility is borne out by the fact that a mound site was said to have been located at the confluence of the Canoochee River and Canoochee Creek (Miller et al. 1983). This area is now occupied by the Explosive Ordnance Disposal and Artillery Impact areas.
The Savannah period population of the project area likely moved to the coast during portions of the winter and early spring months, and possibly for brief intervals during other parts of the year. Many of the large shell midden sites adjacent to estuaries are less than a day’s travel. Only very small amounts of shell have been identified on any of the Savannah components identified on Fort Stewart to date.

The Savannah period occupants of the Lewis Mound and related sites would have been located less than 50 km from the Irene Mound site. As a smaller chiefdom they may have been subject to what appears to have been the center for the region as a whole. This would have likely required paying tribute after the summer harvests. Of course, it should be noted that burial mounds are not typically associated with chiefdom level sociopolitical organization in the Southeast. Nevertheless, the presence of a Savannah Platform mound at the Irene site indicates that the Coastal Societies from this period were operating as chiefdoms.

The final prehistoric occupation of the project area, during the Irene period, is marked by only a few sherds on the Lewis Mound site. Although a few additional Irene components have been identified elsewhere on the reservation, there appears to have been a large scale abandonment of the region. As Figure 70 documents, Irene components are far more common on the barrier islands and mainland shore of the Coastal Zone.

European American components from the eighteenth century are relatively common along the coast and along the Savannah River, as indicated in Figure 71. Such components are relatively under-reported or less common in the interior.
Figure 72. Savannah Components Identified on Fort Stewart. Overlay: Hypothetical Settlement System.
CHAPTER 7
Eligibility and Management Recommendations

The Lewis Mound and Village Site (9BN39)

Despite over 50 years of professional archaeological investigations in the Coastal Zone of Georgia, our knowledge of the prehistory of the region is fragmentary and often conflicting. For example, two of the principal sources for the region, Crook’s (1986) operating plan for research into the Mississippian period and DePratter’s (1991) summary of the WPA era work in Chatham County, disagree on such basic cultural historical questions as the very existence of the Saint Catherines period and whether or not the Savannah period extends to the time of European contact. Precious few surveys have been conducted in the interior of the Coastal Zone, and virtually no sites located off the mainland shore or barrier islands have been excavated. In addition, with a few notable (and widely criticized) exceptions (Crook 1986; Larson 1980; Milanich 1971) there have been no attempts to provide comprehensive analyses of prehistoric settlement systems in the region.

Chronological, cultural, and ecological questions abound. How sedentary were the Savannah and Irene populations of the coast? Did Saint Catherines and Savannah period societies in the region operate at the chiefdom level? When did corn become an important part of the diet? How were the coastal shell midden sites, interior artifacts scatters, and mound sites integrated into an overall settlement system? What are the chronological markers for the Middle Archaic period? Additional examples are easy to imagine.

Against this background, it is reasonable to suggest that virtually any well-preserved prehistoric site in the Coastal Zone has the potential to yield significant, new information. In fact, even considerably disturbed sites in the region may be able to contribute important information if they can provide large collections of artifacts or other data useful for comparative purposes.

Our testing demonstrates that the Lewis Mound site was repeatedly reoccupied from the Late Archaic through early historic periods. Although some of these components may have been ephemeral, the density of sherds from the Deptford, Wilmington, Saint Catherines, and Savannah periods suggests that occupation of the site at these points must have been fairly intensive. At a minimum, then, the site could provide important artifact collections that could be used for comparison with other sites on the Coast.

However, as a reasonably well preserved, multi-component site in a vastly understudied area, the Lewis Mound site can provide much more significant information as well. Our testing indicates that the site has been only minimally disturbed by cultivation and logging. Although our testing identified few features, only a minute fraction of the total site was excavated. The density of sherds suggests that houses must have been constructed on the site. There is undoubtedly preserved residue from these habitations, including features such as post molds, pits, and hearths. With the careful excavation of larger blocks, it should be possible to identify
structural patterns and activity areas, either through the identification of features or through artifact distribution data.

Some hint of this possibility is observable in our testing results. The concentration of Savannah pottery in shovel tests and test units in the area approximately 30 m south of the mound suggests that this was the location of one or more structures during the Middle Mississippian period. The area between here and the mound, in contrast, appears to contain relatively little Savannah pottery, and may have been left open, possibly as a plaza or garden plot. Additional excavation should be able to verify this pattern and provide greater resolution.

Other significant information may come from contrasting the distribution of various pottery types across the site. As an example, it appears that there are significant differences in the horizontal spatial distributions of Saint Catherines and Savannah pottery on 9BN39. While Savannah pottery is, as previously noted, concentrated in the area approximately 30 m south of the mound, Saint Catherines sherds are more dense in proveniences just to the north of the Lewis Mound. If true, this would suggest that these types were deposited during distinct occupations. This contrasts with Crook’s (1978) data from the Kennan Field and Bourbon Field sites, where the two pottery types were correlated spatially, and were therefore assumed (probably prematurely) to be contemporaneous.

Other research questions may be addressed through more sophisticated analyses. Ethnobotanical studies, for example, could provide important information on the use of cultigens over the course of the Woodland and Mississippian periods. The analysis of faunal remains, which should also be preserved on the site, could provide much needed data on the use of wild foods, as well as diet and nutrition. Carbon dating of features could greatly enhance our artifact chronologies.

The rather anomalous location of the Lewis Mound site some distance from the closest large stream provides grist for related research questions. Were the occupants of the site focusing on specific local resources, such as acorns and hickory nuts? Or, conversely, was this landform selected because the soils were comparatively good for horticulture?

The mound itself, although greatly disturbed by looting, may still hold a wealth of information. Possible burial goods could provide information on status and regional exchange. If undisturbed interments are present, questions concerning health and nutrition could be addressed with direct skeletal evidence.

Finally, the colonial era occupation of site 9BN39 also has the potential to contribute significant, new information. This component appears to be residue from a single, small farmstead, or perhaps one part of a larger plantation. In any case, the limited data that is available suggests that it dates very early in the history of the colony, probably not long after initial British settlement in 1733. The fact that this occupation has not been obscured by more recent historic settlements makes it rather rare. Additional archival research could likely divulge more information on the inhabitants, but because this period is poorly documented, the archaeological component is essential for obtaining broader information.
Clearly, the Lewis Mound and Village site is uniquely poised to address a number of key research topics. It is, therefore, the opinion of the Principal Investigator that site 9BN39 is eligible for the National Register of Historic Places under criteria "d", pertaining to significant sites "...have yielded, or may be likely to yield, information important in prehistory or history." If the State Historic Preservation Officer concurs with this recommendation, the site should be nominated to the National Register. This is required by Subsection 2 (a) of Executive Order 11593, which requires Federal agencies to nominate to the National Register all eligible cultural resources under their jurisdiction or control. Personnel of the United States Army are directed to comply with Executive Order 11593 according to Army Regulation 420-40.

As a National Register eligible property on public land, site 9BN39 is protected by a variety of federal laws and regulations. The most explicit of these is the National Historic Preservation Act of 1966 (Public Law 89-665), and the accompanying federal regulation (36 CFR 800). Section 106 of this act requires that Federal agencies must take into account the effect of any proposed undertaking on a property that is included in, or eligible to the National Register. In addition, as a Native American burial ground, the Lewis Mound and Village site is protected by the American Indian Religious Freedom Act of 1978 (Public Law 95-341) and the Native American Graves Protection and Repatriation Act (Public Law 101-601).

Essentially, these laws require that certain procedures be followed before any type of disturbance is planned or implemented for the Lewis Mound site. The site should be protected from any type of ground disturbance activities, including tracked vehicle traffic, logging, and construction. Although foot traffic results in negligible ground disturbance, certain aspects of military training, such as the excavation of foxholes, gun emplacements, and breastworks, can lead to extensive damage. Fox holes have been excavated on the site in the past. This should be avoided in the future by placing the area off limits to training activities. Given that the site is on the eastern periphery of the reservation in a little used area, this should not adversely affect Fort Stewart's mission.

Additional protection is afforded by Section 6 of the Archaeological Resources Protection Act of 1979 (Public Law 96-95), which states that "...no person may excavate, remove, damage, or otherwise alter or deface any archaeological resource located on public lands..." This law charges federal agencies like Fort Stewart with protecting important sites such as the Lewis Mound from looting or vandalism. The uncontrolled excavations into the mound by Tom Lewis and an unidentified party at some time in the past were a violation of this responsibility. The position of the site adjacent to an area used extensively in the past were a violation of this responsibility. The position of the site adjacent to an area used extensively by the public for recreation places it in considerable danger. Measures should be taken to prevent future looting of the site. At a minimum, these measures should include increased patrols of the area by military personnel and closing the road to the site. If additional funds become available, a remote surveillance system should be installed. Finally, educational and training classes for military and civilian personnel on the reservation should highlight the need to protect cultural resources such as the Lewis Mound site, and should emphasize the penalties for violation of the laws that protect them.
Site 9BN133

The results of our intensive shovel testing of archaeological site 9BN133 suggest that it contains relatively dense and well preserved remains from a variety of prehistoric periods, including the Late Archaic, Early/Middle Woodland, Early Mississippian, and Middle Mississippian periods. Many of the same research issues that apply to the Lewis Mound site can also be addressed by these components on 9BN133. In addition, the site contains a potentially important historic component consisting of the remains of some type of earthwork, perhaps a dam or dike.

We recommend that additional testing should be conducted to better define the components that are present on site 9BN133, as well as the integrity of the deposits. Until such testing can be completed, we recommend that the site is potentially eligible to the National Register.

If the State Historic Preservation Officer concurs with this recommendation, Site 9BN133 should be protected in accordance with Section 106 of the National Historic Preservation Act, Executive Order 11593, and Section 6 of the Archaeological Resources Protection Act.

Sites 9BN134 and 9BN135

Sites 9BN134 and 9BN135 are relatively insubstantial prehistoric artifact scatters. Although the identification of these sites has contributed to our overall knowledge of prehistoric settlement on Fort Stewart and across the region as a whole, both appear to have limited research potential. These two sites are recommended ineligible to the National Register.
References Cited

Anderson, David G.

Anderson, David G. and J. Schuldenrein

Anderson, David G., and Greg T. Hanson

Anderson, David G., R. Jerald Ledbetter, and Lisa D. O’Steen
1990 Paleoindian Archaeology of Georgia. *University of Georgia Laboratory of Archaeology Series* Report No. 28, University of Georgia, Athens.

Benson, Robert W.

Binford, Lewis R.

Blanton, Dennis

Blanton, Dennis B., and Kenneth E. Sassaman

Braley, Chad O.

Braley, Chad O., R.R. Doyon, and J. Mark Williams
1985 The Archeological Confirmation of Fort Argyle (9BRY28), Bryan County, Georgia. Report on file with the Interagency Archeological Services Division, National Park Service, Atlanta.

Braley, Chad O., Lisa D. O'Steen, and Irvy R. Quitmyer

Brooks, Mark J., Larry Lepionka, Ted A. Rathbun, and John Goldsborough, Jr.
1982 Preliminary Archeological Investigations at the Callawasie Island Burial Mound (38BU19), Beaufort County, South Carolina. Research Manuscript Series 185, Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Bullen, Ripley P.

Bushnell, Amy Turner

Cable, John S.
Caldwell, Joseph R.

Caldwell, Joseph R. and C. McCann
1941 *Irene Mound Site, Chatham County, Georgia*. University of Georgia Press, Athens.

n.d.(a) Excavations at the Cedar Grove Tract, Chatham County. Unpublished preliminary report. Manuscript files, Laboratory of Archaeology, the University of Georgia.

n.d.(b) Excavations at the Dotson Site, Chatham County, Georgia. Unpublished preliminary report. Manuscript files, Laboratory of Archaeology, the University of Georgia.

Caldwell, Joseph R., and A.J. Waring, Jr.

Callahan, E.

Charles, Frank N. III, and Dennis Finch

Claflin, William H.

Coe, Joffre
Coleman, Kenneth
1960 *Georgia History in Outline.* University of Georgia Press, Athens.

Collins, M.B.

Cook, Fred C.

Cridlebaugh, Patricia A.

Crook, Morgan R.

1986 Mississippi Period Archaeology of the Georgia Coastal Zone. *University of Georgia Laboratory of Archaeology Series* Report Number 23, Georgia Archaeological Research Design Papers No. 1. The University of Georgia, Athens.

DeBry, Theodor
1591 *America, Part II.* Original Manuscript on file at the Hargrett Rare Book and Manuscript Library, the University of Georgia.

DePratter, Chester B.

1991 *W.P.A. Archaeological Excavations in Chatham County, Georgia: 1937-1942.* University of Georgia Laboratory of Archaeology Series, No. 29. Athens.

Des Barres, J.F.W.

1780 *The Coast, Rivers, and Inlets of the Province of Georgia, Surveyed by Joseph Avery and others.* Published by J.F.W. Des Barres.

Elliott, Daniel T.

1990 *The Lost City Survey; Archaeological Reconnaissance of Nine Eighteenth Century Settlements in Chatham and Effingham Counties, Georgia.* LAMAR Institute Publication 19. LAMAR Institute, Watkinsville, Georgia.

Elliott, Daniel and R. Doyon

1981 *Archaeology and Historical Geography of the Savannah River Floodplain Near Augusta, Georgia.* University of Georgia Laboratory of Archaeology Series Report No. 22. University of Georgia, Athens.

Elliott, Daniel T., and Kenneth E. Sassaman

1995 *Archaic Period Archaeology of the Georgia Coastal Plain and Coastal Zone.* University of Georgia Laboratory of Archaeology Series Report No. 35, Georgia Archaeological Research Design Paper No. 11. University of Georgia, Athens.

Elvas, Gentlemen of

Fish, Paul R.

1976 *Patterns of Prehistoric Site Distribution in Effingham and Screven Counties, Georgia: Results of an Archaeological Survey for the USDA Soil Conservation Service in the Ebenezer Creek Watershed.* University of Georgia Laboratory of Archaeology Series Report No. 11. University of Georgia, Athens.

Frink, D.S.

Fryman, Mildred L., J.W. Griffin, and J.J. Miller
1979 *Archeology and History of the Harris Neck National Wildlife Refuge, McIntosh County, Georgia.* U.S. Fish and Wildlife Service, Region 4, Atlanta, Georgia.

Garrow, Patrick H.

Gilbert, Steve G.

Goad, Sharon I.
1979 *Chert Resources in Georgia: Archaeological and Geological Perspectives.* University of Georgia Laboratory of Archaeology Series Report No. 21, Wallace Reservoir Project Contribution No. 3. University of Georgia, Athens.

Granger, M.

Hall, Captain Basil, R.N.
1829 *Travels in America, in the Years 1827 and 1828.* Cadell and Co., Edinburgh.

Hally, David J.
1984 *Vessel Assemblages and Food Habits: A Comparison of Two Aboriginal Southeastern Vessel Assemblages.* *Southeastern Archaeology* 3(1):46-64.

Hally, David J., Richard Zurel, and Tom Gresham

Hemperly, Marion R.
Hodler, Thomas W., and H.A. Schretter
1987 *The Atlas of Georgia.* Institute of Community and Area Development, the University of Georgia, Athens.

House, J.H. and D.L. Ballenger

Hudson, Charles M. (editor)

Ivers, Larry
1972 *Scouting the Inland Passage, 1685 - 1737.* *South Carolina Historical Magazine* 73:117-129.

Jackson, Susan H., Lesley M. Drucker, and Debra K. Martin

Jones, Grant

Kimball, Lawrence R.

Kirkland, Survey Dwight

Kodack, Mark
Knoblock, B.

Kwas, Mary L.

Lane, M.

Lanning, J.T.

Larson, L.H., Jr.

1957 The Norman Mound, McIntosh County, Georgia. *Florida Anthropologist* 8(3):75-81.

Laudonniere, R.

Lepionka, Larry

Lyon, E.

Marrinan, Rochelle

Martin, Debra K., Newell O. Wright, Jr., and Lesley M. Drucker

Martinez, C.A.

Michie, James
1977 *The Late Pleistocene Human Occupation of South Carolina.* Unpublished Senior Honors thesis. Department of Anthropology, University of South Carolina, Columbia.

Milanich, J.T.

Miller, James J., Mildred L. Fryman, John W. Griffin, Catherine D. Lee, and David E. Swindell

Moore, Clarence B.

Noel-Hume, Ivor

O'Steen, Lisa D., R. Jerald Ledbetter, Daniel T. Elliott, and William W. Barker

Pearson, Charles E.

Pluckhahn, Thomas J.

1995b The Lewis Mound (9BN39) and the Mississippian Occupation of Fort Stewart, Georgia. Early Georgia 23(1):77-92.

Professional Analysts

1982 Field Maps from the Lewis Mound. On file at the 24th Infantry Division Museum, Fort Stewart, Georgia.
Prunty, Merle

Register, Alveta K.
1970 The Fifth Census of the United States, 1830, Bryan County, Georgia. Manuscript on file at the Georgia Room, University of Georgia Library.

Ross, M.

Saffer, Marian E.

Sassaman, Kenneth E., Kristin J. Wilson, and Frankie Snow

Schnell, Frank T., and Newell O. Wright

Smith, Hale G.

Smith, J.F.

Smith, Marvin T.
n.d. Archaeological Investigations at the Dyar Site, 9GE5, Wallace Reservoir, Georgia. *Wallace Reservoir Contribution*, No. 56, Department of Anthropology, the University of Georgia.

Smith, Robin L., and N. Honerkemp
Smith, Robin L., Chad O. Braley, N.T. Borremans, and E.J. Reitz

Snow, Frankie

South, Stanley A.

Spalding, Phinizy

Steinen, Karl

Stephenson, D. Keith

Stephenson, Keith, John E. Worth, and Frankie Snow
1990 A Savannah Period Mound in the Upper-Interior Coastal Plain of Georgia. Early Georgia 18 (1 and 2):41-64.

Stoltman, James B.

Taylor, R.L. and M.F. Smith

Temple, S.B. G. and K. Colemen

TePaske, J.J.
Thomas, David H.

Thomas, Prentice M., Jr., L. Janice Campbell, and Mathilda Cox

Trinkley, Michael

Trinkley, Michael, Debi Hacker, Natalie Adams, and David Lawrence
1992 *Archaeological Data Recovery at 38BU833, a Saint Catherines and Savannah Shell Midden Site, Hilton Head Island, Beaufort County, South Carolina*. Research Series 27, the Chicora Foundation, Inc., Columbia, South Carolina.

United States Geological Survey
1920 Limerick Quadrangle 1:62,500 series.

1970 State of Georgia 1:500,000 series.

1983 Richmond Hill Quadrangle 1:24,000 series.

Waring, Antonio J.

Waring, Antonio J., Jr. and P. Holder

Webb, William S.
1950 *The Read Shell Midden, Site 10, Butler County, Kentucky*. University of Kentucky Reports in Anthropology 7(5).
Wharton, Charles H.
1978 *The Natural Environments of Georgia.* Georgia Department of Natural Resources, Atlanta.

Wilkes, Robert L., J.H. Johnson, H.T. Stoner, and D.D. Bacon

Williams, J. Mark

Wood, Karen G.
1985 *Life in New Leeds: Archeological and Historic Investigations at the Fahm Street Extension Site, 9CH703 (FS), Savannah, Georgia.* Submitted to City of Savannah, Office of the Assistant City Manager.

Worth, John E.
APPENDIX A
ARTIFACT INVENTORY FOR THE LEWIS MOUND SITE