Archaeological Investigations of Lot R-52 Laurel Grove North Cemetery, Savannah, Georgia

LAMAR Institute Publication Series, Report Number 212

The LAMAR Institute, Inc.

Savannah, Georgia

2016
Archaeological Investigations of Lot R-52
Laurel Grove North Cemetery, Savannah, Georgia

By Daniel T. Elliott,
The LAMAR Institute, Inc.

Submitted to:
Department of Cemeteries
City of Savannah, Georgia

The LAMAR Institute, Inc.
Savannah, Georgia

2016
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>GPR Survey</td>
<td>3</td>
</tr>
<tr>
<td>History of the Marquis DeLafayette Cowart Family and Lot R-52</td>
<td>11</td>
</tr>
<tr>
<td>Archaeological Excavations on Lot R-52</td>
<td>14</td>
</tr>
<tr>
<td>Test Unit 1</td>
<td>14</td>
</tr>
<tr>
<td>Test Unit 2</td>
<td>16</td>
</tr>
<tr>
<td>Test Unit 3</td>
<td>20</td>
</tr>
<tr>
<td>Summary</td>
<td>23</td>
</tr>
<tr>
<td>References Cited</td>
<td>24</td>
</tr>
</tbody>
</table>
List of Figures

1. Plan of Laurel Grove North Cemetery, Savannah, Georgia. Arrow Indicates Approximate GPR Project Location (City of Savannah 2016). 2
2. Plan of GPR Coverage (outlined in red), Lots R-53 (left) and R-52 (right), Laurel Grove North Cemetery, Savannah (Sagis.org 2016). 2
3. GPR Overlay Plan of Blocks D and C (left and right, respectively), Lots R-53 and R-52, 800 MHz Antenna. 7
4. GPR Overlay Plan of Blocks A and B (left and right respectively), Lots R-53 and R52, 500 MHz Antenna. 8
5. Radargram Plan of Block C, Lot R-52. 9
6. Profile View of Radargram 147, GPR Block C, Lot R-52. 10
7. Profile View of Radargram 142, Block C, Lot R-52. 10
9. Plan of Burial 1, Lot R-52, Laurel Grove North Cemetery, Savannah. 15
10. East Profile, Test Unit 1. 15
11. Plan of Burial 2, Lot R-52, Laurel Grove North Cemetery, Savannah. 17
12. Close-up of Metal Nameplate of Marquis D. Cowart, Burial 2, Lot R-52, Laurel Grove North Cemetery, Savannah. 18
13. Plan of Test Units 2 and 3, Lot R-52, Laurel Grove North Cemetery. 19
14. North and East Profiles, Test Unit 2. 20
15. North Profile of Test Unit 3, Lot R-52, Laurel Grove North Cemetery. 21
16. Plan of Sample Excavation of Burial 3, Test Unit 3, Lot R-52, Laurel Grove North Cemetery, Savannah. 22
Introduction

This report presents the findings of archaeological investigations by the LAMAR Institute on Burial Lot R-52 of the Laurel Grove North Cemetery in Savannah, Georgia (Figures 1-2). In the late winter of 2016 a sinkhole developed at the northwestern corner of Lot R-52. Savannah’s Cemetery Administrator was concerned that the sinkhole was created by an artificial drainage failure and that substantial repairs to this drain system would be necessary. Cemetery managers determined that GPR survey offered one solution for locating potential human burials without damaging them and to guide further repairs to the drainage network. The LAMAR Institute was hired by the City of Savannah to conduct a GPR survey of Lots R-52 and R-53. Based on the findings of the GPR survey, the LAMAR Institute was authorized to excavate potential grave anomalies within Lot R-52. This report details the findings of these excavations.

Lots R-52 is a rectangular cemetery lot within Section R (Ravine) of Laurel Grove North Cemetery is indicated in Figures 2. Lot R-52 contains no grave markers. A review of Laurel Grove North cemetery records for this lot revealed three potential interments.

Laurel Grove North was the site of a plantation in the colonial period and early federal period known as Springfield plantation. The land containing Laurel Grove North was purchased by the City of Savannah in 1850. It is one of five municipal cemeteries owned and operated by the City of Savannah (De Bow 1854:247; Fleming 2001). Laurel Grove cemetery was designed following a plan made by James O. Morse (Atkinson 1918:415). Laurel Grove North Cemetery rapidly filled with interments. By 1909 the City discussed, “the idea of improving certain portions of Laurel Grove, notably that of the ravine, which will give a great many lots” (Tiedeman 1910:343). By 1913 the Ravine section of Laurel Grove North was in use.

Extending the Laurel Grove North cemetery into the ravine has led to erosion problems. Surface observation of the ravine north of Lot R-52 provided important insight into past attempts to control surface water runoff in the Laurel Grove North cemetery. Initial evidence for the cemetery’s drainage system was exposed by cemetery workers in the area approximately 2 meters south of Lot R-52. The top of this pipe is located approximately 2.5 m below ground. It is oriented along the same long axis as Lot R-52. A cursory inspection of the eastern soil profile in the sinkhole in Lot R-52 revealed a large corroded cast iron pipe. The top of this pipe was approximately 1 m below ground. The diameter of the pipe was not determined but it is larger than 1 foot in diameter. The pipe is oriented along the long axis of Lot R-52. A long section of smaller diameter cast iron pipe lying on the surface in the ravine area, north of the cemetery lot, confirmed this area as part of the drainage network. A partially intact dry-laid pavement of Savannah gray bricks was observed leading from the northern edge of the two cemetery lot to an upright brick feature. This feature has a large circular opening suggesting it also functioned as part of the drainage system.
Figure 1. Plan of Laurel Grove North Cemetery, Savannah, Georgia. Arrow Indicates Approximate GPR Project Location (City of Savannah 2016).

Figure 2. Plan of GPR Coverage (outlined in red), Lots R-53 (left) and R-52 (right), Laurel Grove North Cemetery, Savannah (Sagis.org 2016).
GPR Survey

GPR Survey of Lots R-52 and R-53 in Laurel Grove North Cemetery was successfully accomplished on March 5, 2016 and post-processing was completed by March 14, 2016. Mr. Richard Gerbasi, Cemetery Administrator, outlined the problem with drainage and erosion at Lots R-52 and R-53. Less than two weeks prior to this initial visit, a large sinkhole appeared in the northwestern corner of Lot R-52. Cemetery personnel had excavated an exploratory trench in front of the Lot R-52 and had discovered a large, deeply buried drain pipe that was oriented consistent with the long axis of the cemetery lots.

This study by the LAMAR Institute represents only the second application of this technology in Laurel Grove North Cemetery. An earlier investigation by the LAMAR Institute examined several areas of the cemetery as part of a Revolutionary War battlefield study (Elliott and Elliott 2009b). The primary mission of that study was to locate vestiges of the American military encampment from 1779, although many unmarked graves dating after the American Revolution also were mapped.

Ground Penetrating Radar, or GPR, is an important remote sensing tool used by archaeologists (Conyers and Goodman 1997; Conyers 2002, 2004). GPR technology uses high frequency electromagnetic waves (microwaves) to acquire subsurface data. The device uses a transmitter antenna and closely spaced receiver antenna to detect changes in electromagnetic properties beneath them. The antennas are suspended just above the ground surface and are shielded to eliminate interference from sources other than directly beneath the device. The transmitting antenna emits a series of electromagnetic waves, which are distorted by differences in soil conductivity, dielectric permittivity, and magnetic permeability. The receiving antenna records the reflected waves for a specified length of time (in nanoseconds, or ns). The approximate depth of an object can be estimated with GPR, by adjusting for electromagnetic propagation conditions.

The GPR sample block in this study area was composed of a series of parallel radargrams (transects). Each radargram yielded two-dimensional cross-section or profile of the radar data. This two-dimensional image is constructed from a sequence of thousands of individual radar traces. A succession of radar traces bouncing off a large buried object often will produce a hyperbola, when viewed graphically in profile. Multiple large objects that are in close proximity may produce multiple, overlapping hyperbolas, which are more difficult to interpret. For example, an isolated historic grave may produce a clear signal, represented by a well-defined hyperbola. A cluster of graves, however, may produce a more garbled signal that is less apparent. The GPR signals that are captured by the receiving antenna are recorded as an array of numerals, which can be converted to gray scale (or color) pixel values. The radargrams are essentially a vertical map of the radar reflection off objects and other soil anomalies. It is not an actual map of the objects. The radargram is produced in real time and is viewable on a computer monitor, mounted on the GPR cart.
GPR has been successfully used for archaeological and forensic anthropological applications to locate relatively shallow features, although the technique also can probe deeply into the ground. The machine is adjusted to best probe to the depth of interest by the use of different frequency range antennas. Higher frequency antennas are more useful at shallow depths, which is most often the case in archaeology. Also, the longer the receiving antenna is set to receive GPR signals (measured in nanoseconds, or ns), the deeper the search. The effectiveness of GPR in various environments on the North American continent is widely variable and depends on solid conductivity, metallic content, and other pedo-chemical factors. Generally, Georgia’s coastal soils have moderately good properties for its application.

GPR signals cannot penetrate large metal objects and the signals are also significantly affected by the presence of salt water. Although radar does not penetrate metal objects, it does generate a distinctive signal that is usually recognizable, particularly for larger metal objects, such as a cast iron cannon or man-hole cover. The signal beneath these objects is often canceled out, which results in a pattern of horizontal lines on the radargram. For smaller objects, such as a scatter of nails, the signal may ricochet from the objects and produce a confusing signal. Rebar-reinforced concrete, as another example, generates an unmistakable radar pattern of rippled lines on the radargram.

Using the same RAMAC X3M GPR system as that used in the present study, Elliott has conducted several GPR studies of 18th and 19th century archaeological sites in coastal Georgia. The first study was at the New Ebenezer town site in Effingham County, Georgia. The results of the GPR work at New Ebenezer were quite exciting and included the delineation of a large portion of a British redoubt palisade ditch and the discovery of several dozen previously unidentified human graves (both within and beyond the known limits of the Jerusalem Lutheran Church cemetery). GPR survey was conducted by Elliott and his colleagues at Fort Morris and Sunbury Cemetery (Liberty County), Sansavilla Bluff (Wayne County), Woodbine Plantation cemetery (Camden County), and Garden Homes [Waldburg Street, Savannah] (Chatham County), the Gould-Bethel Cemetery (Chatham County), the Gould-Bethel Cemetery (Chatham County), Bullhead Bluff Cemetery (Camden County), Fort Saint Andrews (Camden County) and numerous other sites with satisfactory results. The same equipment has been used successfully for GPR surveys on seven of Georgia’s barrier islands, including Cumberland, Jekyll, Ossabaw, Sapelo, St. Catherines, St. Simons, and Tybee islands (Elliott 2003a-c, 2004, 2005, 2006a-d, 2007,2008a-b, 2009a-b; Elliott and Burns 2007). The LAMAR Institute conducted GPR survey on portions of three municipal cemeteries in Savannah, including Bonaventure, Colonial Cemetery and Laurel Grove North (Elliott 2010a, b; Elliott and Elliott 2009a, b).

The equipment used for this study consisted of a RAMAC/X3M Integrated Radar Control Unit, mounted on a wheeled-cart and linked to a RAMAC XV11 Monitor (Firmware, Version 3.2.36). Both 500 megahertz (MHz) and an 800 MHz shielded antennae were used for the data gathering. MALÅ GeoScience’s Ground Vision (Version 1.4.5) software was used to acquire and record the radar data (MALÅ GeoScience USA 2006). The radar information was displayed as a series of radargrams. Output from the survey
was first viewed using *GroundVision*. This provided immediate feedback about the suitability of GPR survey in the area and the effective operation of the equipment.

The time window that was selected allowed data gathering to focus on the upper 3 meters of soil, which was the zone most likely to yield archaeological deposits. Additional filters were used to refine the radar information during post-processing. These include adjustments to the gain. These alterations to the data are reversible, however, and do not affect the original data that was collected. This same combination of GPR equipment and radar imaging software was used previously in coastal Georgia with very satisfactory results. Machinery settings and other pertinent logistical attributes included the following:

Machine Settings
- **Time Window:** 71 ns for 500 MHz; 53.8 ns for 800 MHz
- **Number of Stacks:** 4
- **Number of Samples:** 560 for 500 MHz; 512 for 800 MHz
- **Sampling Frequency:** 7462.13 MHz for 500 MHz; 8954.55 for 800 MHz
- **Antenna:** 500 MHz and 800 MHz (shielded)
- **Antenna Separation:** 0.18m for 500 MHz; 0.14m for 800 MHz
- **Trigger:** 0.02m for 500 MHz; 0.04m for 800 MHz
- **Estimated soil velocity:** 100
- **Radargram orientation:** South to North
- **Radargram progress:** West to East
- **Radargram Spacing:** 50cm for 500 MHz and 25cm for 800 MHz
- **Total Radargrams:** 47, includes A=8, B=8, C=14, D=16, representing 213.8 m total length
- **Dimensions:** A=2.9m N-S by 4m E-W; B= 7.3m N-S by 3.5m E-W; C=8m N-S by 3.5m E-W; D=2.9m N-S by 3.75m E-W

The GPR survey consisted of 47 radargrams, which covered a total of 213.8 (linear) meters. Magnetic North is to the top of the page in this view. The only hindrance to complete coverage was the large sinkhole in the northwestern corner of Lot R-52 and a large Eastern red cedar stump in the southeastern corner of the same lot. The sinkhole obliterated an area approximately 80 cm north-south by 1 m east-west. Three small tombstones were located in the southern part of the Lot R-53 sample and these were avoided. Surface conditions were manicured grass. English ivy was profuse along the northern fence of the two cemetery lots.

The GPR data from the present study was processed with *GPR-Slice* (Version 7.0). Goodman’s *GPR-Slice* program is recognized as the world leader in GPR imaging (Goodman 2006, 2016). Mapping in 3D entailed merging the data from the series of radargrams for each block. Once this was accomplished, horizontal slices of the data were examined for important anomalies and patterns of anomalies, which had cultural relevance. These data were displayed as aerial plan maps of the sample areas at varying depths below ground surface. These horizontal views, or time-slices, display the radar information at a set time depth in nanoseconds (ns). Time-depth can be roughly equated to depth below ground. This equivalency relationship can be calculated using a mathematical formula.
Profile and plan maps of the GPR data suggest that the northern one-third of Lot R-53 contains no additional interments beyond the six marked graves. These same six graves are recorded in the Sexton records for Laurel Grove North cemetery. No evidence for any drainage pipes were recognized in the GPR data from Lot R-53. Lot R-53 contains the graves of Ester S. McElveen, Ollie B. Laspeyre, James Daniel Bowen, Mrs. Betty Romer, Elizabeth Newman Morrell, and Elizabeth McCloughlan. The dates of these burials range from 1920 to 1996.

GPR Block A examined the northern one-third of Lot R-53. Radar data was gathered using the 500 MHz antenna. This GPR block measured 2.9 m north-south (maximum) by 4 m east-west. A total of eight radargrams was collected, which represent a total survey length of 20.2 m. GPR Block D examined the same area of Lot R-53 using the 800 MHz antenna. This GPR block measured 2.9 m north-south by 3.75 m east-west. A total of 16 radargrams was collected, which represent a total survey length of 42.7 m.

Plan maps of the Lots R-52 and R-53 GPR data are useful in imaging potential historic graves. Overlay Analysis is another useful method for imaging GPR radar data with GPR-Slice software. This process consists of creating maps by adding data from selected time slice layers of GPR data to create a composite view. Figures 3 and 4 show overlay maps of the surveyed areas.

GPR Block B examined nearly all of Lot R-52 using the 500 MHz antenna. This GPR block measured 7.3 m (maximum) north-south by 3.5 m east-west. A total of eight radargrams was collected. These represent a total survey length of 50.8 m. Figure 15 shows one radargram example from Block B. The strong radar anomaly visible on the right half of this radargram represents the large cast iron drainage pipe that was confirmed approximately 1 m below ground.

GPR Block C also examined the same area within Lot R-52 but with the 800 MHz antenna. This GPR block measured 8 m (maximum) north-south by 3.5 m east-west. A total of 15 radargrams was collected. These represent a total survey length of 100.1 m. Figure 5 shows the layout of the radargrams in Block C. Figures 6 and 7 show two radargram examples from Block C. GPR mapping of Lot R-52 revealed a large radar anomaly of interest in the north-central portion of the cemetery lot. The anomaly appears as a strong, flat radar reflection approximately 1.4 m in length. On the two overlay plan maps the anomaly appears as an elongated reflection consistent in size and shape of a human burial. The anomaly appears as an elongated mass. The radar reflections were closely studied and many traits are consistent with a human grave signature. A second area of interest was located in the west-central portion of Lot R-52. Initially, this radar anomaly was interpreted as a possible drainage pipe. The possibility that it represented a human grave was considered low, but not altogether impossible. This anomaly was selected for archaeological investigation.
Figure 3. GPR Overlay Plan of Blocks D and C (left and right, respectively), Lots R-53 and R-52, 800 MHz Antenna.
Figure 4. GPR Overlay Plan of Blocks A and B (left and right respectively), Lots R-53 and R52, 500 MHz Antenna.
Figure 5. Radargram Plan of Block C, Lot R-52.
Figure 6. Profile View of Radargram 147, GPR Block C, Lot R-52.

Figure 7. Profile View of Radargram 142, Block C, Lot R-52.
History of the Marquis DeLafayette Cowart Family and Lot R-52

Following the initial GPR survey of Lots R-52 and R-53 the task focused on further exploration of Lot R-52. A review of City of Savannah records, as well as other historical resources, yielded information on the family of Marquis DeLafayette Cowart, three of whom are interred in Lot R-52.

Marquis De Lafayette Cowart was born on January 24, 1863 in Tattnall County, Georgia to Benjamin Franklin Cowart and Sarah Sapp Cowart (Wildes 1990; Ancestry.com 2016). Marquis died on December 11, 1924 at age 61 years, 11 months and 17 days. The cause of death listed on his death certificate was, “ulcer duodenum-stricken sudden death 4th day after op[eration]” (Crawford 1924). Marquis was married twice. Marquis and his first wife Henrietta had nine or more children. Marquis was self-employed as a dentist. He received his degree in Dentistry from the Atlanta Dental College in 1905 and was licensed by the State of Georgia that same year (Coleman 1962:124). Marquis resided in Collins, Tattnall County, Georgia and downtown Savannah. Marquis is listed as a Caucasian in Federal census records. City of Savannah cemetery records list that “Dr. M. D. Cowart” was buried on December 13, 1924 in Laurel Grove North Cemetery, Ravine Section, Block O, Lot 52. The firm of Fox and Weeks served as undertakers. The Last Will and Testament of Marquis DeLafayette Cowart was recorded in Chatham County, Will Book Y, 1922-1925 on page 486 (Ancestry.com 2016).

Marquis was married to Henrietta Louella Brazell (1874-February 1913) on September 6, 1890 in Tattnall County, Georgia. Henrietta died at age 40 on February 28, 1913 and buried on March 2, 1913 in Laurel Grove North Cemetery, Section SGN, Block S, Lot 3. She was identified in those records as “Henrietta L. Cowart” and “Mrs. H. L. Cowart”. City of Savannah cemetery records further note that the grave of “Mrs. H. L. Cowart” was relocated from her original burial site in Laurel Grove North to Ravine Section, Block O, Lot 52 on March 27, 1918.

In 1906, Marquis Cowart [Sr.] resided at 341 Whitaker Street in Savannah. In 1908 Marquis and Henrietta resided at 1212 Montgomery Street and his dentist office was at 116 Bull Street. In 1911, his dentist office was at 346 ½ West Broad Street and the Cowart family residence was 107 West Broad Street (Savannah, Georgia, Voter Records, 1906:22; Goette 1908:311; The Savannah Directory Publishing Company 1911:288).

In 1914, following his wife Henrietta’s death, Marquis had moved his residence and dentist office to 203 York Street in Savannah. In 1916, his dentist office and home moved to 141 Barnard Street. In 1917 and 1919, his home and dentist office were at 353 West Broad Street (The Savannah Directory Publishing Company 1914:284; 1915:285; 1916:272; 1917:237; 1918:240).

Marquis was married for a second time to Dolly Miller, who was born 1880. The two likely were married sometime between 1918 and 1920, based on city directory information. Marquis and Dolly are listed at the same residence at 342 ½ West Broad
Street, which also served as his dentist office, in the 1920 Savannah City Directory (The Savannah Directory Publishing Company 1920:265). Their address at the time of Marquis’ death in 1924 remained 342 ½ West Broad Street. No records pertaining to Dolly Miller, dating after Marquis’ death, were located.

The nine identified children of Marquis and Henrietta Cowart were: Annie Cowart, Ennis Lee Cowart, M. Cowart, Nellie Otto Cowart, Frankie [Jean] Cowart Gould, Pearson Cowart, James B. Cowart, Marcus De Laffette Cowart, and Henrietta Inez Cowart Williams. Remarkably, Mrs. Henrietta Cowart gave birth to (at least) three sets of fraternal twins in this marriage. All of her children were born within a 14 year span. Biographical information about each of the children is presented below.

Annie Cowart. Federal census records for 1900 indicate that Annie Cowart was born in April, 1892 and listed in the Marcus Cowan [sic] 1900 census for Tattnall County, Georgia (Ancestry.com 2016). The preliminary research revealed no other information concerning this person.

Ennis Lee Cowart. Ennis Lee Cowart was born on April 17, 1892. He also is enumerated in the 1900 Federal census for the Marcus Cowan [sic] household. His World War I draft registration card lists him as a single Caucasian of short, slender build, light blue eyes, light brown hair. In April 1918, at age 26, he was working as a mechanic for the American Can Company in Savannah after service as a Private 1st Class in the U.S. Army. He died in 1982 (Ancestry.com 2016).

M. Cowart. A child known only by the first name initial “M” was born 1893. The preliminary research revealed no other information concerning this person (Ancestry.com 2016).

Nellie Otto Cowart. Nellie Otto Cowart was born on August 26, 1893. She married James D. Chavers in 1922 and she died in 1974 (Ancestry.com 2016).

Frankie [Jean] Cowart Gould. Frankie [Jean] Cowart Gould was born on September 19, 1895 and died on May 21, 1934. She is enumerated in the Federal census for 1900 for the Marcus Cowan [sic] household. City of Savannah cemetery records show that Mrs. Frankie Cowart Gould died May 21, 1934 and was buried in Laurel Grove North, Ravine Section, Block O, Lot 52 on June 1, 1934. She was married to Champion E. Gould and in 1920 and 1930, records indicate that the couple resided in Savannah (Ancestry.com 2016).

Pearson Cowart. Pearson Cowart was born on January 14, 1898 and he died in 1951. He is enumerated in the Federal census for 1900 in the Marcus Cowan [sic] household. In 1930 he married Marion L. Sharpley. He appeared in the 1940 census for Savannah, Georgia where his residence was listed as 1319 Forty-ninth Street. Pearson died on December 22, 1951 in Savannah, Georgia and his remains were buried in Lot 26, Block P, Section 11 of Bonaventure Cemetery (Ancestry.com 2016).
James B. Cowart. Federal census records for 1900 (Marcus Cowan household) indicate that James B. Cowart born May 1900. The preliminary research revealed no other information concerning this person (Ancestry.com 2016).

Marcus De Laffette Cowart. Marcus De Laffette Cowart was born on May 11, 1900. This is most likely the same person as Marquis De Lafayette, Jr. One of two of the children is Marquis D. Cowart, Jr., who is listed as a City of Savannah resident in early 20th century directories. It is unclear whether he is the child born in 1893 or in 1900. In 1916, for example, both Marquis, Sr. and Marquis, Jr. resided at the same street address (The Savannah Directory Publishing Company 1916:272). By 1928, however, Marquis D. Cowart was living in Memphis, Tennessee (R.L. Polk & Company 1928:410).

Henrietta Inez Cowart Williams. Henrietta Inez Cowart Williams was born on September 3, 1905. She married Raymond Winn, Sr. and she died Savannah, Georgia in 1969 (Ancestry.com 2016).

Infant Cowart. City of Savannah cemetery records list an “Infant Cowart”, died on April 6, 1906 and buried the same day at Laurel Grove North cemetery, Section X, Block X, Lot X. This infant may represent the tenth child of Marquis and Henrietta Cowart, or it may be unrelated.
Archaeological Excavations on Lot R-52

The LAMAR Institute’s excavation team completed excavation of three test units within Lot R-52 of Laurel Grove North cemetery (Figure 8). Test Units 1 and 2 were chosen on the basis of suspicious GPR reflections that suggested these areas contained potential human graves. Both suspicions were confirmed by the location of two historic graves. Unexpectedly, however, indications of a third grave were suggested along the eastern edge of Test Unit 2, where the extreme edge of a horizontal wooden plank and several possible coffin nails were recovered. Based on this scant information, a third test unit was opened up. Test Unit 3 revealed a rectangular wooden coffin in a heavily decayed state. The findings from these excavations are detailed in the following section. Figure 8 shows the plan of Test Units 1-3, including all three burials in Lot R-52.

Test Unit 1
Test Unit 1 was a 3 m by 2 m excavation placed in the northeastern corner of Lot R-52 (Figures 9 and 10). The strongest and largest GPR anomaly was located within this area. This anomaly was suspected to be a human burial. The excavation soon confirmed the presence of a human burial, which was designated Burial 1. It was capped with a domed-concrete vault. Brick edging along the northern side of the cemetery lot was removed to
accommodate this burial. This indicates that Burial 1 post dates the creation of this brick edging.

Figure 9. Plan of Burial 1, Lot R-52, Laurel Grove North Cemetery, Savannah.

Figure 10. East Profile, Test Unit 1.
Concrete burial vaults of the type used in Burial 1 became popular in the early 20th century. The National Concrete Burial Vault Association was chartered in 1930 by concrete manufacturers in the United States and Canada (National Concrete Burial Vault Association 2016). The evolution of concrete vaults went from two-piece vaults in the late 1920s to cast vaults by the mid-1930s. These vaults protected the caskets from being crushed by the overburden. One source noted, “the average grave has 18 inches of earth covering, which results in a static load of approximately 4,000 pounds (two tons).” (Gethsemane Cemetery 2016).

Burial 1 is probably the grave of Frankie [Jean] Cowart Gould, daughter of Marquis and Henrietta Cowart, who was born on September 19, 1895 and died on May 21, 1934. City of Savannah cemetery records show that Mrs. Frankie Cowart Gould was buried in Lot 52 of the Ravine Section on June 1, 1934. The coffin vault unearthed in Test Unit 1 is consistent with a circa 1934 interment.

Test Unit 2

Test Unit 2 was placed in the west-central part of Lot R-52 where the GPR mapping indicated a large, elongated radar anomaly (Figures 11-14). This excavation revealed a rectangular grave shaft (Feature 2) that contained a metal coffin, which was designated Burial 2. Researchers were excited to discover a small silver metal nameplate on the coffin lid, which identified this as the grave of Marquis D. Cowart, 1863-1924. Marquis De Lafayette Cowart was born on January 24, 1863 and died on December 11, 1924. City of Savannah cemetery records list that “Dr. M. D. Cowart” was buried in this cemetery lot on December 13, 1924.
Figure 11. Plan of Burial 2, Lot R-52, Laurel Grove North Cemetery, Savannah.
Figure 12. Close-up of Metal Nameplate of Marquis D. Cowart, Burial 2, Lot R-52, Laurel Grove North Cemetery, Savannah.
Figure 13. Plan of Test Units 2 and 3, Lot R-52, Laurel Grove North Cemetery.
Test Unit 3

Test Unit 3 was placed immediately east of Test Unit 2 (see Figure 13, Figures 15 and 16). The reason for the placement of Test Unit 3 was because suspected coffin wood was detected along the eastern edge of Test Unit 2 at a depth consistent with a human burial. GPR survey had not shown any significant anomaly at the location but researchers opted to excavate the area to confirm or deny the existence of a third burial in Lot R-52.

Their suspicions were confirmed when a rectangular feature outline was detected. Once the suspected grave outline became clearly observable the excavation of Level 2 was terminated and a small exploratory test measuring 50 cm by 50 cm, designated Level 3, was placed in the southeastern corner of the suspected grave. Researchers carefully removed soil from Level 3 and located coffin wood, coffin nails and two decorative iron thumbscrews that were used to secure the coffin lid. Once this feature was confirmed as Burial 3, the excavation ceased.
Burial 3 in Test Unit 3 is almost certainly the grave of Mrs. Henrietta Louella Brazell Cowart. Mrs. Cowart was the first wife of Marquis D. Cowart. Henrietta died on February 28, 1913 and was buried on March 2, 1913 in another section of the Laurel Grove North cemetery. City of Savannah cemetery records further note that the grave of “Mrs. H. L. Cowart” was relocated from her original burial site in Laurel Grove North to Ravine Section, Block O, Lot 52 on March 27, 1918. The findings in Burial 3 are consistent with a poorly preserved grave that was moved after lying in the ground for five years.

Figure 15. North Profile of Test Unit 3, Lot R-52, Laurel Grove North Cemetery.
Figure 16. Plan of Sample Excavation of Burial 3, Test Unit 3, Lot R-52, Laurel Grove North Cemetery, Savannah.
Summary

The LAMAR Institute completed archaeological GPR survey and excavations within a portion of the Ravine Section of Laurel Grove North Cemetery in Savannah, Georgia. This effort was necessitated by an emergency erosion situation, when a large sinkhole formed in the northwestern corner of Lot R-52. The Cemetery Administrator sought basic information on the contents of Lots R-52 and the northern one-third of adjacent Lot R-53 as planning information for addressing this emergency. Ground Penetrating Radar (GPR) survey explored these two areas.

The GPR results suggested two large radar anomalies within Lot R-52 that displayed characteristics consistent with human burials. The work was augmented to include test excavation above these two anomalies in order to better determine their function and identity. Test Unit 1 explored the strongest radar anomaly in the northeastern corner of the cemetery lot. This excavation revealed a concrete burial vault. This vault is likely to contain the remains of Mrs. Frankie Cowart Gould, daughter of Marquis and Henrietta Cowart, who was buried in 1934.

Test Unit 2 explored another large radar anomaly in the west-central portion of the cemetery lot. It revealed the metal coffin of Marquis DeLafayette Cowart, who was buried in 1924. The identity of Burial 2 was resolved by the discovery of a small metal nameplate that was attached to the coffin lid. It bore the name Marquis D. Cowart, 1863-1924.

The archaeologists noticed rotted wood and possible coffin nails along the eastern edge of Test Unit 2, possibly representing a third burial. The work expanded to the east with Test Unit 3 to explore this potential grave. This excavation confirmed the existence of a third interment in Lot R-52. This grave was a poorly preserved wooden coffin with iron handles, iron nails and decorative iron thumbscrews. Burial 3 is likely the grave of Henrietta Cowart, who died in 1913, was buried in another part of Laurel Grove North Cemetery and then exhumed and reburied in Lot R-52 in 1918. This burial was not recognized from the GPR survey data. No human remains were disturbed in any of the three burials that were discovered by the archaeological excavations.

In all three historic burials were identified within Lot R-52 of Laurel Grove North cemetery. Although none of these graves were marked at the ground surface, the identities of all three graves have almost certainly been determined from the present archaeological and historical research. These three interments are most likely the only graves contained within Lot R-52.
References Cited

Ancestry.com

Atkinson, David S.
1918 *The Code of the City of Savannah.* City of Savannah, Georgia.

Coleman, W. Edgar
1962 *History of Dentistry in Georgia.* Georgia Dental Association, Atlanta, Georgia.

Conyers, Lawrence B.

2004 *Ground Penetrating Radar for Archaeology.* Altamira Press, Lanham, Maryland.

Conyers, Lawrence B., and Dean Goodman

Crawford, C.B.

De Bow, J.D.B.
1854 Great Cities of the United States—Savannah, Georgia. *De Bow’s Review* 17:244-250.

Elliott, Daniel T.

2003b Archaeological Investigations at Fort Morris State Historic Site, Liberty County, Georgia. Southern Research Historic Preservation Consultants, Ellerslie, Georgia. Submitted to Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

2004 Ground Penetrating Radar Survey at the Woodbine Mound Site. LAMAR Institute and Rocquemore Research, Box Springs, Georgia.

2016 Ground Penetrating Radar Survey of Lots R-52 & R-53, Laurel Grove North Cemetery, Savannah, Georgia. Report submitted to Department of Cemeteries, City of Savannah, Georgia. The LAMAR Institute, Savannah, Georgia.

Elliott, Daniel T. and Jason Burns

Elliott, Rita F. and Daniel T. Elliott

Fleming, Jerry
2001 *Rules and Regulations of Municipal Cemeteries 2001.* City of Savannah, Georgia Facilities
Maintenance Bureau, Department of Cemeteries, Savannah, Georgia.

Gethsemane Cemetery

Goette, H.A.
1908 Goette’s Savannah City Directory for 1908, Volume VIII. Braid & Hutton, Savannah, Georgia.

Goodman, Dean

MALÅ GeoScience USA

National Concrete Burial Vault Association

R. L. Polk & Company

Sagis.org

Savannah, City of
2016 Laurel Grove North Cemetery Map. City of Savannah, Georgia.

The Savannah Directory Publishing Company
1911 Savannah 1911 City Directory. Morning News Print, Savannah, Georgia.
1914 Savannah 1914 City Directory. Morning News Print, Savannah, Georgia.
1915 Savannah 1915 City Directory. Morning News Print, Savannah, Georgia.
1916 Savannah 1916 City Directory. Morning News Print, Savannah, Georgia.

Tiedeman, George W.