Soapstone in Georgia

LAMAR Institute Publication Series
Report Number 112

Authored by Daniel T. Elliott

Savannah, Georgia
2017
Contents

Preface: Soapstone—A Personal Connection .. 2

Identified Soapstone Quarries and Soapstone Outcrops in Georgia 4

Soapstone Ridge, Clayton, DeKalb and Fulton Counties 7
 DeKalb County Quarries .. 8
 Clayton County Quarry, 9CN48 ... 28
 Fulton County Quarries .. 28

Baldwin county .. 29

Banks County ... 30
 9BA65, Roundabout Quarry ... 30

Carroll County ... 31

Cherokee County .. 35

Cobb County .. 36

Columbia County ... 37
 Burt and Dixie Mountain Quarries, Site 9CB23 ... 40

Coweta County ... 44

Dawson County .. 45

Douglas County .. 45

Elbert County .. 47

Fannin County .. 49

Gilmer County ... 49

Greene County ... 50
 Site 9GE263, Richland Creek Quarry .. 51
Site 9GE1226, Daniels Spring Quarry ... 52
Gwinnett County .. 52
Habersham County ... 53
Hall County .. 54
Hancock County .. 55
Harris County ... 56
Heard County .. 58
Jackson County .. 59
Jasper County .. 60
Jones County ... 61
Lincoln County .. 61
Lumpkin County .. 62
McDuffie County ... 66
Meriwether County ... 66
Monroe County .. 67
Morgan County .. 68
Murray County ... 69
Oglethorpe County ... 70
Paulding County .. 70
Pickens County .. 73
Putnam County ... 73
Rabun County .. 73
Stephens County ... 75
Taliaferro County ... 76
List of Figures

Figure 1. Soapstone Deposits in Georgia (Adapted from Chidester et al. 1964). 6

Figure 2. Soapstone and Related Rock Deposits in Georgia (Adapted from Hopkins 1914). ... 7

Figure 3. Soapstone Quarries and Related Sites on Soapstone Ridge (Dickens and Carnes 1976). .. 8

Figure 4. Topographical Map of Soapstone Ridge in 1930, Showing Powhatan Springs, Historic Roads, Scattered Dwellings and Most of the Ridge Undeveloped (MARBL 1930). ... 9

Figure 5. Soapstone Quarry Boulder, Relocated from River Road to Old DeKalb County Courthouse, Decatur, Georgia. ... 11

Figure 6. Soapstone Boulder with Incomplete Bowl Attached, Soapstone Ridge (Billingsley 1977:28). ... 11

Figure 7. Example of Quarried Boulder on Soapstone Ridge (Dickens and Carnes 1976). ... 12

Figure 8. Soapstone Vessels from Soapstone Ridge (Dickens and Carnes 1976:Figure 16). ... 12

Figure 9. Examples of Unfinished and Broken Soapstone Bowls in a Private Collection on Soapstone Ridge (Dickens and Carnes 1976). ... 13

Figure 10. Quarried Boulder with Bowl Preform, Site 9DA17 (Dickens and Carnes 1975:22, Plate 1). ... 14

Figure 11. McGarity-Ethridge Quarry, 9DA17 (Dickens and Carnes 1976: Figure 8). 14

Figure 12. Site 9DA17 (Gresham 1997:8, Figure 1). ... 15

Figure 13. Excavations in 1981 at the Fork Creek Mountain Soapstone Quarry, Site 9DA18 (Courtesy of John Worth). ... 16

Figure 14. Quarry Boulder at the Fork Creek Mountain Quarry (Cressler 2013). 16

Figure 15. Live Oak Quarry, 9DA139, Area A (Elliott 1986:46, Figure 14)....................... 17

Figure 16. Plan of Charlotte Woods Quarry (9DA248). .. 21
Figure 17. Arnold W. Hardin Soapstone Bowl Collection, 1976 (Elliott 1986:32, Figure 7). .. 22

Figure 18. Hardin Quarry, Site 9DA53 Plan (Loubser 1998)... 23

Figure 19. Soapstone Quarry, Site 9DA50 (Dickens and Carnes 1975:23, Plate 4)......... 24

Figure 20. Quarried Boulder with Unfinished Bowls, Site 9DA101 (Dickens and Carnes 1975:25, Plate 8). 26

Figure 21. Soapstone Petroglyph, Site 9DA249 (Elliott 1986:40-41). 27

Figure 22. Burns Rock Quarry (Larson and Simpkins 1976, v.1:II-Gb). 32

Figure 23. Soapstone Boulder with Multiple Bowl Removal Scars, Carrollton, Georgia (Cressler n.d.). ... 33

Figure 24. Soapstone Boulder with Bowl Removal Scar, Carrollton, Georgia (Cressler n.d.). .. 34

Figure 25. Soapstone Boulder with Bowl Removal Scars, Carrollton, Georgia (Cressler n.d.). .. 35

Figure 26. Sprayberry Rock, Cobb County, Georgia (Cressler n.d.). 37

Figure 27. Approximate Location of Soapstone Quarry in Columbia County, as Described by C.C. Jones, Jr. (1880:350). 38

Figure 28. Approximate Location of Soapstone Outcrop, Walnut Grove, Columbia County, Georgia (Hopkins 1914:299; GNIS 2010). ... 39

Figure 29. Approximate Location of Soapstone Outcrop, Crawford Place, Columbia County, Georgia (Hopkins 1914:299; GNIS 2010). ... 39

Figure 30. Approximate Location of Soapstone Outcrops, Northeast of Appling, Georgia (Hopkins 1914:301; GNIS 2010). 40

Figure 31. Annotated Photograph of a Worked Soapstone Specimen, Site 9CB23 (Lewis 1977). ... 40

Figure 32. Approximately Location of Douglas County Soapstone Outcrop, Former Carnes Property (Hopkins 1914:283-284; Mapper.acme.com 2010). 46

Figure 33. Approximate Location of Soapstone Outcrop, South of Brownsville in Douglas County (Hopkins 1914:283-284; Mapper.acme.com 2010). 47
Figure 34. Soapstone Perforated Slab Quarry, Outcrop and Habitation/Workshop Site, Elbert County, Georgia. .. 49

Figure 35. Bear Den Mountain, Gilmer County, Georgia (Mapper.acme.com 2010)....... 50

Figure 36. Richland Creek Quarry, Site 9GE263 (GNIS 2010)................................. 52

Figure 37. Approximate Location of Soapstone Deposit, 4 Miles Northwest of Cornelia, Georgia (Hopkins 1914:269; GNIS 2010)... 54

Figure 38. Soapstone Hill Vicinity, Hall County, Georgia (King 1894:98-100; Hopkins 1914:171; GNIS 2010). .. 55

Figure 39. Soapstone Resource, Hancock County, Georgia.. 56

Figure 40. Approximate Location of Soapstone Outcrop, Harris County, Georgia (Hopkins 1914:290; GNIS 2010)... 57

Figure 41. Approximate Location of Soapstone Deposit, Mountain Creek, Harris County, Georgia (Hopkins 1914:290; GNIS 2010)............................... 57

Figure 42. Approximate Location of Soapstone Outcrop, South of Pine Mountain, Georgia (Hopkins 1914:290; GNIS 2010).. 58

Figure 43. Approximate Location of Soapstone Deposit, Deer Branch, Heard County, Georgia (Hopkins 1914; GNIS 2010)... 59

Figure 44. Approximate Location of Curry Creek Outcrop, Jackson County, Georgia (Hopkins 1914:175-176; GNIS 2010). ... 60

Figure 45. McElhenneys Crossroads, Jasper County, Georgia (Hopkins 1914:37-38, 283; GNIS 2010). .. 61

Figure 46. Soapstone Outcrop near Dahlonega, Lumpkin County (Hopkins 1914: Plate XIXa).. 63

Figure 47. Small Prospect Opening on Soapstone Ridge, North of Dahlonega, Lumpkin County (Hopkins 1914: Plate XIXb). ... 63

Figure 48. Approximate Location of Soapstone Deposit, Lumpkin County, Georgia (Hopkins 1914:276; GNIS 2010)... 64

Figure 49. Approximately Location of Soapstone Deposit, Lumpkin County, Georgia (Hopkins 1914:276; GNIS 2010)... 64
Figure 50. Portion of Galpin’s sketch map of Lumpkin and Union counties, showing a soapstone deposit west of Porter Springs (Galpin 1915:158, Figure 3) 65

Figure 51. Approximate location of soapstone deposit shown by Galpin (1915:158) 65

Figure 52. Soapstone Grave Markers at the Wahoo Church Cemetery, Lumpkin County, Georgia (Vanishing Georgia 2013) .. 66

Figure 53. Approximate Location Soapstone Outcrop, Meriwether County, Georgia (Hopkins 1914:291-292; GNIS 2010) ... 67

Figure 54. Approximate Location of Soapstone Deposit, Monroe County, Georgia (Hopkins 1914:292-293; GNIS 2010) ... 68

Figure 55. Talc Mines on Fort Mountain, Murray County, Georgia (GNIS 2010)........ 70

Figure 56. Approximate Location of Soapstone Deposit, Paulding County, Georgia (Hopkins 1914:281; GNIS 2010) ... 71

Figure 57. Former Vicinity of 9PA102, Soapstone Quarry, Now Thunder Ridge Road, Paulding County, Georgia (Cantley 1998; Cantley and Raymer 1998; GNIS 2010) 72

Figure 58. Laurel Creek Mine, Rabun County, Georgia (Hopkins 1914:143-144; GNIS 2010) ... 74

Figure 59. Approximate Location of Soapstone Outcrop, Rabun County, Georgia (Hopkins 1914; GNIS 2010) ... 75

Figure 60. Soapstone Creek, Towns County, Georgia (GNIS 2010)............................ 77

Figure 61. Soapstone Boulder with Multiple Pits and Bowl Removal Scars, Towns County. ... 78

Figure 62. James Mooney’s Sketches of Petroglyphs at Track Rock, Union County, Georgia (Mooney 1889, in Powell 1900:418, Plate XX) .. 80

Figure 63. Soapstone Boulder at Track Rock, Union County (Loubser 2010) 81

Figure 64. Quarried Boulder at Site 9UN15 (Courtesy of Mrs. J.J. Hulsey 2000) 82

Figure 65. Soapstone Gap, Union County, Georgia (Mapper.acme.com 2010) 83

Figure 66. Soapstone Branch, Union County, Georgia (GNIS 2010) 83

Figure 67. Soapstone Branch, Warren County, Georgia (GNIS 2010) 84
Figure 68. Approximately Location of Mallorysville Soapstone Quarry, Site 9WS1, Based on Wauchope's Directions (Mapper.acme.com 2010). .. 85

Figure 69. Examples of Perforated Soapstone Slabs, 9PM205 (Rogers 1982: Plate 11). ... 94

Figure 70. Reconstructed Soapstone Bowl, 9GE145 (Hally 1982: Plate 6)......................... 95

Figure 71. Soapstone Bowl from Site 9CE608, Chattahoochee County, Georgia........... 102

Figure 72. Soapstone Bird Effigy Bowl, Attributed to Seaborn Jones Collection (American Museum of Natural History, Catalog Number 20.0/765)................................. 103

Figure 73. Rare Example of Soapstone Perforated Slab, Buckner Collection, Flint River Watershed, Talbot County, Georgia.. 104

Figure 74. Soapstone Effigy Pipe Excavated by Reynolds from Hollywood Mounds, Richmond County.. 105

Figure 75. Late Archaic Sites in Georgia, As of March 31, 2010 (GASF 2010)................. 107
Preface: Soapstone—A Personal Connection

The story of soapstone is a personal one and one that is a tale of quite an archaeological journey. From the age of three and for the next 58 years, soapstone has often occupied my mind. I was born and raised in an area of Georgia known as Soapstone Ridge. More properly, I lived at 3548 Bouldercrest Road (formerly 3002 Bouldercrest Road and prior to that, East Atlanta Road) in Ellenwood (formerly Conley), DeKalb County (formerly Henry County), Georgia (formerly land of the Creek Nation, occupied by the Welaunee). I was raised among the soapstone boulders and saw my first Late Archaic soapstone bowl as a toddler. It was used by my neighbor, Earl D. Roark, to water his chickens. I met my first archaeologist, Dan Morse, around the age of four, when he was sent out by the Georgia Historical Commission to Soapstone Ridge in advance of Interstate Highway construction for the perimeter highway around Atlanta. I found my first soapstone bowl around the age of 16, back in the deep woods behind my house. I started formal archaeological field training at age 21. When I started graduate school at the University of Georgia in 1976 I had a grand plan. It was to survey and locate all the Archaic period soapstone quarry sites in Georgia, as well as all of the related workshop and habitation sites. Needless to say, I scaled down my efforts for my thesis research. I completed my M.A. thesis on soapstone use in the Wallace Reservoir (Lake Oconee, Georgia) at age 26. I supervised my first (disappointing) Neutron Activation Analysis of Georgia soapstone samples at age 27. I met Dr. Roy Dickens, my guru in understanding Archaic soapstone bowl technology, about the same time. I excavated my first “real” soapstone quarry, the Live Oak Landfill Quarry Site-9DA139 (since destroyed and covered by Atlanta’s garbage) at age 31.

I consider myself an authority on the subject of soapstone use in Georgia, although my most intensive period of soapstone-related research was from about 1976-1993 and have been largely dormant on the subject for the past 24 years. Although I have written many pages on the subject of soapstone in numerous archaeological reports, these reports are not widely circulated and many of my thoughts on the subject have remained relatively obscure. I am now 61 and have finally decided to complete an article on soapstone, which I promised my major professor Stephen Kowalewski that I would do some 37 years ago. This monograph is an attempt to download my brain (and my filing cabinets) on the subject of soapstone use in Georgia in a coherent and organized manner. This report establishes baseline data for a more ambitious state-wide soapstone survey project.

Since I began my serious study of soapstone in 1976 our collective knowledge of the Archaic period chronology and social organization and Archaic soapstone artifact distribution and consumption strategies in eastern North America has greatly improved. In the late 1970s, this idea that stone bowls followed the invention of ceramic bowls in time bordered on heresy. The “conventional wisdom” perceived a logical sequence of evolutionary technological development from the stone-age to the ceramic-age with fiber tempered pots following in lock-step after their soapstone antecedents. This understanding held throughout the eastern seaboard. Soapstone bowls were “old school” the type of dinner service that Wilma Flintstone may have boasted.
By the early 1980s, however, this author suspected this chronological scheme was faulty. What was lacking at that time was any stratigraphic sequence that clearly revealed the positions of soapstone vessels and fiber-tempered pottery. None of the excavated Late Archaic sites in my Oconee River valley experience had answered this question. Earlier excavation data in the Savannah River valley, particularly at Stallings Island, also had not answered the question. Nor had the excavations on the Georgia coast, particularly at Bilbo, shown the proper chronological relationship between the two. I recall a conversation with Roy Dickens, Jr. in the Pizza Hut in Elberton, Georgia in late 1981, when I suggested that the soapstone bowl tradition on the Savannah River may actually post-date the Stallings fiber tempered pottery tradition. Dr. Dickens gave me a questioning look and then replied with a thoughtful “hmmm”, telegraphing that he did not dismiss my idea entirely. I had based my assertion on a hunch, which has since partly vindicated by AMS dates taken from sooted soapstone vessel sherds (Sassaman 1997:1-20; 2006:141-156; Sassaman et al. 1996; Truncer 1999, 2004a-b, 2006). My ideas on the chronological sequence were counter-intuitive to the conventional wisdom of archaeologists but I was at least partially correct.

Excavation data from the Savannah River valley has shown that the use of soapstone as a cooking aid clearly predates fiber tempered pottery and subsequent research at the Mims Point site (9ED9) in Edgefield County South Carolina has pushed the use of soapstone for this purpose has been pushed way back into the Middle Archaic period (Sassaman 2000; Sassaman et al. 2006:539-556). The seemingly simple story of perforated cooking slabs in the Southeast became far more sophisticated as the archaeological evidence accumulated in the 1980s and 1990s. Here was an artifact type that had geographic limitations to four or five river systems but an artifact that endured for more than a millennium. As the scholarly discourse published by Sassaman and Truncer demonstrates, the discipline of archaeology has not settled all of the issues surrounding the dating of soapstone technological innovations in eastern North America.

The detailed, scientific definition of soapstone falls under the purview of geologists, although even geologists disagree on its definition (c.f., Higgins et al. 1980; Chaumba 2009a-b; Chaumba and Swanson 2008; Chaumba and Murphy 2013). Suffice it to say, the terms chlorite schist, metagabbro, soapstone, steatite, tacle, and ultramafics have often been used interchangeably by past authors when discussion the aboriginal quarries of this ultramafic stone in Georgia. I prefer the generic term soapstone, which is a catchall term that covers all stone bowl materials that are found in Georgia, except for sandstone. It is an ancient stone that outcrops in the Georgia piedmont and Blue Ridge mountain provinces. It is known to occur in many counties in this state, as well as many counties in neighboring Alabama, North Carolina, South Carolina, and Tennessee.

The extent of the soapstone bowl quarrying and manufacturing in eastern North American extends from the Alabama, Georgia and South Carolina fall line zones to Labrador, Canada. Archaic period soapstone quarries have been documented in nearly all the eastern states of the United States, including Alabama, Connecticut, Georgia, Maryland, North Carolina, Rhode Island, Pennsylvania, Virginia, and the District of Columbia. Scholarly curiosity for these quarry sites was sparked early in the history of the discipline of archaeology. Important early scholarship was published by David Bushnell (1939), Frederick Ward Putnam (1878), and William Henry Holmes (1897).
Charles Collcock Jones, Jr.

International attention was drawn to the Savannah River region of Georgia following the Civil War with the explorations of Charles C. Jones, Jr., who was a pioneer in the field of archaeology and a contemporary of Ephraim Squire and other early archaeological explorers. Jones’ writings relating to Georgia antiquities include several books and journal articles (Jones 1861, 1873, 1880). Jones conducted surface collections and made extensive excavations at Stallings Island, and possibly excavated at other sites in the region such as Price’s Island and the Great Kiokee Creek shell midden. Despite Jones’ extensive publication record, few artifacts or other records pertaining to his specific sites in the Savannah River valley were located during a recent search by this author. A collection of artifacts collected by Jones found their way into the Smithsonian Institution's collection through direct donation by Jones, indirect donation by way of former Smithsonian curator, Charles Rau, and through purchase following Jones’ death (The American Museum Journal, Volume 1:1900-1901). A preliminary search of the Smithsonian's current holdings indicates that Jones’ collection has greatly dwindled in size through the years. As of 1968, portions of Jones' collection were in possession of the Claflin family in Belmont, Massachusetts (Williams 1977). Other material collected by Jones formerly in the Heye Museum in New York city now may be in dead storage in Washington, D.C. The portion of Jones' collection that was examined for this study at the Smithsonian Institution includes Late Archaic pottery, projectile points, soapstone, and shell beads from Stallings Island and Prices Island. The primary contribution of Charles C. Jones, Jr. to the Savannah River Archaic lies not so much in the quality of his fieldwork or in his surviving relic collections, but in the attention to the region his work created for subsequent scholars.

Identified Soapstone Quarries and Soapstone Outcrops in Georgia

Prehistoric soapstone bowl quarries have been identified in at least 22 of Georgia’s 159 counties. These counties include Banks, Carroll, Clayton, Cobb, Columbia, Dawson, DeKalb, Elbert, Fulton, Gilmer, Greene, Gwinnett, Jackson, Lumpkin, Morgan, Paulding, Putnam, Stephens, Towns, Troup, Union and Wilkes. Soapstone outcrops are documented in these counties as well as 14 other counties in the northern part of Georgia. Counties with documented soapstone deposits, but no officially recorded aboriginal soapstone quarry sites, include: Cherokee, Coweta, Douglas, Fannin, Habersham, Hall, Hancock, Harris, Heard, Lincoln, Meriwether, Murray, Richmond and White. Historic period soapstone quarries and talc mines are documented for several of these counties, including Cherokee, Douglas and Murray (Hopkins 1914; Hillyard 1897:181). Approximately 67 aboriginal soapstone quarries are documented in the Georgia Archaeological Site File. The level of research effort expended on each of these quarry sites varies widely. Only a few have been carefully mapped and explored by controlled excavations. Most are known only from their surface features. Capsule summaries of these known soapstone deposits and soapstone quarry sites are presented in this chapter. The chapter is organized into two main parts. The first section presents the data from Soapstone Ridge in Clayton, DeKalb and Fulton counties, an area of Georgia that has been extensively surveyed for soapstone quarries and related sites. DeKalb County is best represented in the sample, represented by at least 36 soapstone quarries. The second part presents soapstone data from the rest of northern Georgia and is organized by county in alphabetical order.
The data on soapstone deposits and quarries was gleaned from a wide variety of published sources, as well as the author’s personal research files and unpublished records at the University of Georgia, Laboratory of Archaeology. To date, no systematic archaeological survey for soapstone quarries has been attempted in the state of Georgia. Consequently, the existing information is sketchy and reflects irregular survey coverage across the state. By far the best known soapstone locality is Soapstone Ridge in Atlanta. Years of research by Roy S. Dickens, Jr. and his anthropology students at Georgia State University (GSU) laid a solid foundation for soapstone studies in the state. Regrettably, it has taken more than 30 years to distill this information down to a state suitable for application for a state-wide survey.

Soapstone occurs widely over the eastern seaboard of North America from Labrador to Alabama in the piedmont and mountain physiographic regions (Chidester et al. 1964). Soapstone is a complex metamorphic stone with many mineral constituents. The talc content in soapstone averages between 10 and 18 percent of the total mass. Talc is the softest mineral, with a Moh’s scale hardness of 1. The hardness of soapstone ranges from 1 to 2.5 on the Moh scale. In its purer form, rock containing more talc content is called steatite. The Live Oak quarry is one location where the stone occurs naturally and was quarried in prehistoric times for soapstone vessels (Dickens et al. 1979; Elliott 1986c). The soapstone deposits on Soapstone Ridge near Atlanta have been described geologically by Hopkins (1914), Chapman (1977), Dickens and Carnes (1976), and Higgins et al. (1986). In many regions of the world where soapstone is found, including the southeastern United States, people discovered the utility of this stone for manufacturing products. Several qualities of the stone made it useful for manufacture: because of the talc content, soapstone is soft and easily carved relative to other stones and can be formed into a wide variety of shapes; because of its complex mineral structure, soapstone has excellent heat retention capabilities and can withstand rapid change from hot to cold without breakage and is well suited for cooking or heating purposes; and soapstone can be polished into an attractive stone that resists chemical weathering. Obvious disadvantages of the stone are as follows: soapstone is quite heavy and not easily transported; soapstone is prone to breakage by physical means during manufacture and use; and considerable energy is required to remove a suitable specimen of soapstone from the parent boulder. Although it is widely distributed along the Appalachian Mountains, Blue Ridge Mountains, and Piedmont areas of the south, soapstone does not occur in the Atlantic Coastal Plain, Ridge and Valley, or in most interior continental areas of the United States (Chidester et al 1964; Misra and Keller 1978). The major deposits of soapstone within Georgia were mapped and described earlier this century (Hopkins 1914), and this research included a brief description of the deposits at Soapstone Ridge. Soapstone Ridge is a geologic intrusion between layers of granite. This intrusion has undergone many millions of years of erosion, and is broken by faults and shear zones that have occurred since its formation. The jointing of the rock mass is largely responsible for the boulder formations that occur on the hilltops on the ridge (King 1957:23). In many cases the rocks are exposed because the surrounding rock was softer and more easily eroded. Soapstone Ridge contains the highest density of prehistoric soapstone quarries of any area in the southeastern United States (Dickens and Carnes 1976; Chapman 1977; DeKalb County Planning Department 1976; Georgia Department of Natural Resources 1974). This area was important prehistorically during the Terminal Archaic period.

Nation-wide distributional studies of soapstone by Chidester and his colleagues (1964) resulted in a map showing the major soapstone deposits in eastern North America, including Georgia. (Figure 1). Geological maps of Georgia’s mineral resources and major geological formations produced by
the Geological Survey of Georgia provide more detailed information on many soapstone and ultramafic rock deposits and outcrops. Many Geology theses and dissertations provide even more detail about selected areas of Georgia, where soapstone deposits were documented. Archaeology is another important source of information on soapstone outcrops and quarries. Approximately 50,000 archaeological sites have been recorded in the Georgia Archaeological Site File, as of early 2010. A minute fraction of these are soapstone quarries. Archaeologists have scoured many areas of Georgia by intensive survey, which has provided complete coverage of many thousands of hectares of Georgia’s uplands. Most archaeologists have lent a keen eye for soapstone outcrops and, consequently, about 67 soapstone bowl quarries have been located.

Figure 1. Soapstone Deposits in Georgia (Adapted from Chidester et al. 1964).

Ultramafic rocks have been mapped geologically in the following counties in Georgia Baldwin, Barrow, Bartow, Cherokee, Clayton, Cobb, Columbia, Coweta, Crawford, DeKalb, Elbert, Fayette, Fulton, Greene, Habersham, Hancock, Heard, Henry, Jasper, Lincoln, Lumpkin, Morgan,
Murray, Paulding, Putnam, Rabun, Taliaferro, Union, White and Wilkes (Lawton et al. 1976). Many of these undifferentiated ultramafics include soapstone, steatite, talc and chloritic schist, including many exposures suitable for aboriginal uses.

Geologist Oliver Hopkins (1914) presented a summary of the soapstone deposits of Georgia. His report is focused on the economic geology potential of the talc, asbestos and soapstone resources, with soapstone receiving the least attention. Figure 2 shows the locations of soapstone deposits identified by Hopkins.

Figure 2. Soapstone and Related Rock Deposits in Georgia (Adapted from Hopkins 1914).

Soapstone Ridge, Clayton, DeKalb and Fulton Counties

Soapstone Ridge is located in the metropolitan Atlanta area and includes portions of Clayton, DeKalb and Fulton counties. This region has yielded the greatest number and greatest concentration of soapstone quarries and quarry workshops in Georgia, if not the Southeastern U.S. Most of the available information from these soapstone extraction sites dates to the 1970s when Georgia State University archaeologists under Dr. Roy Dickens, Jr. studied the region (Dickens 1976; Dickens and Barber 1976; Dickens and Carnes 1976, 1980; Chapman 1977; DeKalb County Planning Commission 1976; McConnell and Abrams 1984; Pennington 1973; Billingsley 1977). Figure 3 shows the distribution of soapstone quarries and related sites on Soapstone Ridge. Figure
4 shows an early topographic map of Soapstone Ridge. Figures 6-8 show soapstone bowl quarry boulders on Soapstone Ridge.

DeKalb County Quarries

An 1883 real estate advertisement for the Poole place, which was a 700 acre plantation on the South River in DeKalb County, Georgia, touted, “The soil is clay foundation, and the rock soapstone” (Adair 1883:6). At the time of the sale the property was owned by Mrs. W.H. Smyth, who had inherited it. The property location was described as, “located at the seven mile post on the public road leading from Atlanta and Jonesboro, one mile east of Rough and Ready, on Central railroad, and two miles west of Moore’s Mill, on East Tennessee, Virginia and Georgia railroad”, and it included “200 acres of splendid bottom”, and one, “prong of South river runs over one mile through the place”. It included 200 acres in heavy timber and 500 acres formerly in cultivation but in thick second growth at the time of the sale.

Hopkins (1914:280) reported soapstone outcrops on the property of S.D. Moore, 1.5 miles east of Conley, Georgia. He also noted that other soapstone deposits were found in the area but he provided no specific locations.

DeKalb County contains more than 36 soapstone quarries. The earliest description of one is the Blue Creek Soapstone Quarry, which was briefly described by Wauchope in 1966. The GSU surveys located 67 prehistoric sites on Soapstone Ridge. Volunteers from the Greater Atlanta Archaeological Society (GAAS) revisited 43 of these sites in 1997 to assess their condition. The GAAS resurvey of the Soapstone Ridge sites listed only 24 of the 67 sites as intact, 10 sites were completely destroyed, and five were badly damaged (Wauchope 1966; Georgia Historical
Commission 1953; Dickens and Carnes 1976, 1983; Elliott 1986; Wheaton and Allison 2004:45-50; Southerland 1996; Gresham 1997). Urban growth has continued since their resurvey and the number of sites has undoubtedly declined even further. Pennington (1973) prepared a nomination form for Soapstone Ridge as a National Register Historic District and it was added to the NRHP in 1973.

Figure 4. Topographical Map of Soapstone Ridge in 1930, Showing Powhatan Springs, Historic Roads, Scattered Dwellings and Most of the Ridge Undeveloped (MARBL 1930).

Soapstone bowl manufacturing technology was described for Soapstone Ridge by Dickens and his colleagues (Dickens and Carnes 1976, 1983; Dickens and McKinley 2003). Dickens and Carnes (1976) described four basic quarrying procedures on Soapstone Ridge:

1. scoring around a natural protuberance, thus creating a pedestal, and then undercutting it (the mushroom technique);

2. creation of an easily removed section by a removal of multiple preforms from a large boulder by the mushroom technique;

3. opportunistic working along joints and other natural fracture surfaces (letting nature do part of the work); and,

4. scoring of small boulders to produce two or more preforms of suitable size.

The first technique (mushroom) and the second technique (an intensified version of the first technique) have been described by many previous researchers from quarries in the mid-Atlantic region (Putnam 1878; Holmes 1897; and Bushnell 1939). The third technique had been previously
described from quarries in the mid-Atlantic by Reynolds (1878), Holmes (1890), and Bushnell (1939). The fourth technique has also been described by Ferguson (1980) for South Carolina. One goal of research at Live Oak was to identify which of these techniques, and what additional extractive techniques, were used.

At least in part, the makers of the soapstone bowls on Soapstone Ridge may have intentionally mimicked the contemporaneous ceramic forms. The hemispherical bowl form may have preceded the flat-bottomed form, and may be directly associated with ceramic types (hemispherical soapstone bowls being contemporaneous with Late Stallings Island ceramics and flat-bottomed soapstone bowls being contemporaneous with Wheeler wares). The soapstone vessel manufacturing technology has been variously described by other authors, and much of what has been described previously is applicable to Soapstone Ridge. Questions still remain concerning certain aspects of the reduction procedure such as: why were certain boulders selected for bowl manufacture while others were untouched; by what method were preforms removed from the parent rock; what tools were employed in preform procurement and vessel reduction; what stages of vessel reduction can be recognized; was subsurface mining undertaken at Soapstone Ridge; at what stage of reduction were vessels transported to a habitation site; and what breakage patterns can be recognized?

Dickens and Carnes (1983) recognized three major vessel forms on Soapstone Ridge: conical (with or without a flat bottom), hemispherical, and an elongated form. Dickens suspected that these vessel varieties have temporal meaning, and this opinion is supported by other researchers in the southeastern United States (Terry Ferguson, personal communication 1986). The data needed to support such a position has not been available, however, and it was hoped that data from Live Oak might help solve this problem. Prior to the beginning of data recovery, it was known that the flat-bottomed cone and hemisphere vessel forms were produced at Live Oak. From the onset, an attempt was made to identify any clues to the diachronic or synchronic relationship between the two vessel forms produced at this quarry. This is a difficult problem to solve for two basic reasons--stratification on quarry sites is usually lacking, and materials for accurate absolute dating such as charcoal for radiocarbon dating is not usually present. Examples of bowls from Soapstone Ridge are shown in Figures 9 and 10 (Dickens and Carnes 1976:Figure 16).

Important advances also took place in soapstone quarry research took place in the late 1980s with excavations at several quarry sites situated near the Clayton-DeKalb County border (Elliott 1986; Bloom et al. 1989, 1991; Webb 1988). This research expanded on the earlier observations made by Dickens and his colleagues.
Figure 5. Soapstone Quarry Boulder, Relocated from River Road to Old DeKalb County Courthouse, Decatur, Georgia.

Figure 6. Soapstone Boulder with Incomplete Bowl Attached, Soapstone Ridge (Billingsley 1977:28).
Figure 7. Example of Quarried Boulder on Soapstone Ridge (Dickens and Carnes 1976).

Figure 8. Soapstone Vessels from Soapstone Ridge (Dickens and Carnes 1976:Figure 16).
Figure 9. Examples of Unfinished and Broken Soapstone Bowls in a Private Collection on Soapstone Ridge (Dickens and Carnes 1976).

Sites 9DA5 and 9DA23, Blue Creek Quarry

Site 9DA5, a soapstone bowl quarry and workshop on Blue Creek, is perhaps the earliest documented quarry on Soapstone Ridge. The quarry site was recorded by Robert Wauchope, although he did not actually visit the site (Wauchope 1966). The vague description provided by Wauchope could pertain to a number of quarry and workshop sites along Blue Creek which were later identified by Roy Dickens, Jr. and his colleagues at Georgia State University, including 9DA17, which is described below. Site 9DA23 is a soapstone workshop recorded in 1973 by Carnes, Chapman, and Charles Babb (Dickens and Barber 1976). This site is near the McGarity-Ethridge Quarry. Gresham (1997) revisited the vicinity of 9DA5 and 9DA23 and located no archaeological sites that he considered eligible for inclusion in the NRHP.

Site 9DA17, McGarity-Ethridge Quarry

Site 9DA17, better known as the McGarity-Ethridge Quarry was first recorded by Robert Wauchope (1966) and revisited by Dickens and Carnes (1975). This site was long recognized by archaeologists and historic preservationists as the premiere example of an aboriginal soapstone quarry for Georgia. Dickens and McKinley used the findings from Site 9DA17 to explain the process of soapstone bowl manufacture in their landmark publication, *Frontiers in the Soil* (Dickens and McKinley 2003). Several artifact collections from the site were contained in the Georgia State University collections and more than 200 photographs were taken of examples of quarried boulders by Dickens and his students. The site was the centerpiece in the Soapstone Ridge National Register District nomination and listing in 1973 (Pennington 1973; DeKalb County Planning Department 1976). Figures 11-13 show various aspects of Site 9DA17.
Unfortunately, the well-preserved Archaic bowl quarry site at 9DA17 was tragically mangled by a housing development project in 1996. An estimated one-half of the site was destroyed by heavy equipment (Southerlin 1996; Gresham 1997). One fortunate outcome of this historic preservation debacle was DeKalb County’s creation of the Soapstone Ridge Historic District in 1997 (Wheaton and Allison 2004:45-50). That ordinance required real estate developers to assess the potential for archaeology prior to any undertaking within the DeKalb County portion of the Soapstone Ridge Historic District. As a consequence of this local development regulation, several new soapstone quarry and related sites have been recorded on Soapstone Ridge.
Site 9DA18, Fork Creek Mountain Quarry

The Fork Creek Mountain Soapstone Quarry (9DA18) is a well-preserved quarry located on the lower slopes of Fort Mountain on Soapstone Ridge in the South River watershed on property owned by DeKalb County. The site was recorded by J.D. Chapman and Becky Carnes [Linda Carnes-McNaughton] in 1973 (Dickens and Carnes 1976, 1993; Dickens and Barber 1976). In mid-1981 Dickens and his colleagues and a Georgia State University Archaeology Field School conducted excavations at the Fork Creek Mountain Quarry (9DA18) in DeKalb County (Figure 14). This site contained several areas with excellent bowl quarrying evidence and the site has since been preserved as a DeKalb County Park (Figure 15). Roy Dickens untimely death in 1986 led to the unfortunate circumstances of no final report of this work was produced, although several of the University of North Carolina graduate students who were involved wrote up portions of the report (Dickens 1983; Carnes 1983). Wagner (1982) wrote his thesis on the vegetation of the Fork Creek Mountain locality.
Figure 13. Excavations in 1981 at the Fork Creek Mountain Soapstone Quarry, Site 9DA18 (Courtesy of John Worth).

Figure 14. Quarry Boulder at the Fork Creek Mountain Quarry (Cressler 2013).
Site 9DA139, Live Oak Landfill Quarry

Site 9DA139, the Live Oak Landfill Quarry, is the most thoroughly investigated soapstone quarry on Soapstone Ridge and in Georgia. Site 9DA139 is situated in DeKalb and Fulton counties, Georgia on the western side of Soapstone Ridge. This quarry site was initially located by GSU archaeologists during a survey for an urban landfill (Dickens et al. 1979). The archaeologists recommended additional study at the site but plans for the landfill development were shelved. The tract containing the quarry was resurveyed by Patrick Garrow in 1984 in advance of the resurrected landfill development and in 1986 data recovery investigations were completed at the site (Garrow 1984, Elliott 1986c). Garrow & Associates’ research at the site included extensive mapping of quarry boulders and quarry bowl rejects and excavations at the soapstone bowl quarry and an associated workshop/habitation (9DA139a) (Figure 15). The crew recovered a large sample of early-stage and mid-stage bowl rejects allowing a detailed study of soapstone vessel form. The collections from the data recovery project are curated at Georgia Southern University Archaeology Museum in Statesboro, Georgia.

Figure 15. Live Oak Quarry, 9DA139, Area A (Elliott 1986:46, Figure 14).
Garrow & Associates excavated four test units totaling 11.25 square meters on the quarry at 9Da139. This constitutes a 2.8 percent sample of the main quarry area, although it represents a much higher percentage of areas between boulders that was suitable for excavation. The excavations demonstrated that there was no substantial stratigraphy within the quarry, and artifacts were largely confined to the upper 20 cm of soil. Artifacts recovered from the test units included soapstone vessel fragments, worked soapstone fragments, quarry picks, quarry pick fragments, fire-cracked quartz, chipped stone debitage, and one formal unifacial scraper. All of these items except the formal uniface and the fire-cracked quartz clearly relate to the soapstone vessel manufacture. The other items suggest that the area was used minimally for other activities. No projectile points, drills, or finished vessel fragments were found at the quarry. The average thickness of soapstone vessel fragments recovered from the excavations at the quarry was 2.65 cm, while the average thickness at the campsite was 1.84 cm. Quarrying evidence was observed on many of the soapstone boulders. At least five distinct types of quarry scars were recognized: circular stem and doughnut depressions on large, well rounded boulder surfaces; carved-off protuberances from the jutting ends of angular boulders; carved-off "scalloped" areas on flat boulder surfaces; bisection of small boulders; and extracted sections of rock along naturally fractured blocky surfaces. A sixth possible type of scar consisted of large sections of spherical boulders removed through direct percussion. Type 1 scars were uncommon on the site with only two clear examples observed. This type is much more common at other sites on Soapstone Ridge. Types 2, 3, and 4 were much more common at Live Oak, but unfortunately these types were much more subtle and difficult to recognize than were the Type 1 scars. One hundred and nineteen quarry tools were recovered from the excavations at Live Oak. This included formal tools (tools worked bifacially and exhibiting hafting elements) and informal tools. All were probably used to extract soapstone preforms from the boulder and to shape the rough form of the vessel. The formal tools were predominantly diabase, although four tools made of hornblende gneiss were also recovered. These tools were bifacial, and shaped for hafting on two sides. The cutting edges of these tools were crudely chipped, with no evidence of grinding. These tools were apparently repeatedly sharpened to the point of exhaustion, indicating that these tools had personal value in the quarry tool kit.

Three of the formal tools were found in close proximity and probably represent a tool cache that was never reclaimed by the owner. Nine complete formal quarry tools were recovered, and the measurements of these tools were averaged to define a typical formal quarry tool at Live Oak: length 10.5 cm, width 7.2 cm, thickness 3.3 cm, blade width 7.2 cm, blade length 5.8 cm, haft width 6.5 cm, and weight 325.9 g. The informal tools were grouped by raw material and they included metapyroxenite (44 specimens), quartz (41 specimens), and hornblende gneiss (3 specimens). The informal tools were minimally modified to produce a working point. This point was slightly more recognizable on the metapyroxenite examples, and it is possible that the different raw materials were used for slightly different tasks. Although these crude tools may have been fitted into a wooden handle, there was no observed evidence of hafting. These tools could have been easily held in one or two hands. The largest complete example of a quartz informal tool is depicted in Figure 26. These tools do not appear to have been curated, but were left on site at the quarry for future use. These tools were probably community property, and considered to have little value. Fifty-two quarry tools or tool fragments were recovered from the excavations at Live Oak -- 23 from the quarry, and 29 from the campsite. The density of quarry tools in the quarry was one tool per 1.07 square meters, while the density at the campsite was much less (one tool per 0.14 square meters). This indicates that the discard of quarry tools was more likely to occur at the quarry
than at the finishing workshop/campsite. The tools that were discarded at the campsite were generally smaller than those at the quarry. Breakage during tool re-sharpening may have been the major reason for discard at the campsite, while breakage during use may have been more common at the quarry. Exhausted formal tools were found in both areas. No evidence of caching was seen at the campsite. Tool marks were recorded on each preform and vessel fragment for the interior and exterior of the sherd. Many of the peck marks may have been produced by the quarry tools (formal and informal), but the observed chisel marks were not produced by these tools. Presumably, the tools used to make the chisel marks were made by perishable tools (antler, bone, or wood). Experimental replication has shown that antler chisels serve well in the manufacture of soapstone bowls. The tool marks recognized included chiseling, multiple parallel chiseling, pecking, and smoothing. Chisels marks produced by a single chisel point were more common on the interior surface (187 examples) than on the exterior (159 examples) throughout the reduction sequence. Individual chisel grooves ranged from 0.3 to 0.9 cm in width. Through most of the reduction process, multiple parallel chisels, or toothed chisels, were more common on the exterior surface (84 examples) than on the interior (59 examples), but on finished sherds the inverse was true (29 interior, 22 exterior). This may be due to a two stage use of the multiple chisel with this tool used for final shaping on the exterior of the vessel during late stage manufacture at the quarry and for final shaping of the interior at the campsite. The width of the multiple parallel chisel grooves tightly clustered around 1.4 cm. Pecking is generally thought to be an early stage reduction activity. Peck marks were probably produced by using stone pick tools -- either formal hafted bifacial picks or crude pointed picks. Peck marks were mostly produced by a vertical action, and were more common on the exterior (210 examples) than the interior (159 examples) throughout the reduction sequence. Figure 28 shows the exterior of a hemispherical vessel preform. The exterior of this vessel is well shaped by pecking and chiseling, while no hollowing of the interior has occurred. Figure 29 illustrates one method used for the removal of soapstone from the interior of the preform. Working from the side towards the bottom, the waste was removed by pecking and chiseling leaving a large central knob within the vessel interior. Had the vessel not broken, this knob would have been completely removed. A large quantity of soapstone vessel fragments and preforms weighing a total of 1,400 kg (3,081 lbs) were recovered from the Live Oak quarry, of which 1,378.18 kg were collected from the quarry. Vessels ranged in size from small cups to very large bowls.

The items were initially classified into one of four arbitrarily defined categories: preform, early stage reject, late stage reject, and finished vessel fragment. Table 8 shows the distribution by reduction category for Areas A and B of 9Da139. This shows that preforms and early stage rejects were confined to the quarry of the site, while late stage rejects and finished sherds were recovered from both areas. Finished sherds were much more common on the campsite, while late stage rejects were more common at the quarry. This supports the position that the vessels were usually removed from the quarry to the campsite for final stage production, and vessels were not removed from the quarry until they reached the late reduction stage.

Researchers classified 90 soapstone fragments according to vessel form. The vessel fragments were grouped for vessel profile information into four categories: full profile, rim and body, body (only), and base and body. Rims and full profiles were most common at the quarry, while body sherds were most common at the campsite. Bases without rims were not common at either location. Eight distinct vessel forms were identified. Flat-bottomed vessels were the most common form represented with 51 specimens. The flat-bottomed vessels were further divided into two sub-
categories: flat bottomed conical vessels (31 examples) and flat-bottomed vessels near vertical walls (19 examples). Irregular vessels constituted the next common category with 18 specimens identified. These vessels were quite variable in size and shape and had little to contribute to the vessel form study. Hemispherical vessels were the third most common type (16 specimens). The remainder of the vessels included two conical vessels with rounded bottoms, a shallow, flat-bottomed pan, a shallow, round-bottomed pan, and a flattened base/hemispherical vessel. One irregular early stage reject was had the beginnings of a lug handle, but overall, lug handles were otherwise absent on vessels at Live Oak. The study focused on the characteristics of the flat-bottomed and hemispherical varieties that were produced at Live Oak. A preliminary review of the metric attributes of flat-bottomed and hemispherical bowls indicated that hemispherical bowls were typically larger than flat-bottomed bowls. These differences were examined more closely and were confirmed. Hemispherical vessels had an average height of 20.25 cm, while flat-bottomed bowls had an average height of 16.22 cm. The average minimum thickness at base of a hemispherical vessel was 10.17 cm, while flat-bottomed bowls averaged 7.57 cm. The average minimum rim thickness of the two vessel forms was very similar -- 3.01 cm for hemispherical and 3.03 cm for flat-bottomed bowls. The average vessel thickness for the two vessel forms was calculated by averaging the minimum basal thickness with the minimum rim thickness. Hemispherical vessels averaged 6.56 cm thickness, and flat-bottomed vessels were only slightly thinner, averaging 5.17 cm. Hemispheric vessels were divided into reduction stages as follows: two preforms, seven early stage rejects, seven late stage rejects, and no finished vessels. Flat-bottomed bowls exhibited a higher percentage of late stage reject, with: two preforms, six early stage rejects, 31 late stage rejects, and two finished (or nearly finished) vessels. Six hemispherical vessels had sufficient attributes for describing the entire vessel. These attributes are shown in Table 10. Based on this small sample, hemispherical vessels produced at the quarry measured 37.3 cm by 30.7 cm, 20.53 cm in height, and weighed 19.66 kg. Similar measurements were made on eight flat-bottomed bowls (Table 11). Based on this sample, the average flat-bottomed vessel measured 28 cm by 28 cm, 13.8 cm in height, and weighed 11.88 kg. These data confirm that flat-bottomed vessels produced at Live Oak were smaller than the hemispherical vessels.

Archaeologists mapped and collected 171 soapstone vessel fragments from the surface at 9DA139. These included 41 flat-bottomed vessels and 15 hemispherical vessels. The distribution of flat-bottomed bowls versus hemispherical bowls shows an overlapping distribution. Both types of vessels were produced on all portions of the quarry. Surveyors found numerous vessel fragments in a space with few boulders bearing quarry scars. The boulders may have been quarried to ground level here, thus removing any obvious boulder evidence that quarries existed in the area.

A series of shovel tests were excavated to better define the site dimensions. Additional surface collection of diagnostic artifacts was conducted within the bulldozed portion of the site during the data recovery. Based on the findings of the previous survey, shovel tests, and surface examination, an area was selected for excavation. Archaeologists excavated 11-2 m by 2 m test units within the workshop/habitation area (9DA139a) for a total of 44 square meters. These units formed an irregular, contiguous block extending 12 m east-west by 8 m north-south. The depth of the plow zone within the block excavation varied slightly from unit to unit depending on the severity of the slope. Soil depth decreased as one proceeded south towards the bluff. Six features extending beneath the plow zone were identified by this process; one of these proved upon excavation to be non-cultural in origin. Five prehistoric features were defined within the excavation block, including two rock hearths and three small postmolds. No ceramics were contained within these
five features and it seems likely that they are associated with the soapstone bowl culture. No radiocarbon dates were obtained from the archaeological studies at 9DA139.

Site 9DA248, Charlotte Woods Quarry

Site 9DA248 was located north and west of the 9DA139 quarry. Jon Bloom reported on extensive survey, testing and data recovery excavations at the Charlotte Woods Quarry, Site 9DA248 (Bloom et al. 1989, 1991). This site is a soapstone bowl quarry that was first recorded by Marvin T. Smith during survey for the Live Oak Landfill (Smith 1986). Bloom expounded on many of the observations at the nearby Live Oak Quarry, and he identified several soapstone extraction strategies that were not evidenced at the Live Oak Quarry. A plan map showing Bloom’s excavation units in relation to the quarry and surface artifacts at 9DA248 is reproduced in Figure 16.

![Figure 16. Plan of Charlotte Woods Quarry (9DA248).](image)

9DA67, Hickory Ridge Quarry

Site 9DA67, later dubbed the Hickory Ridge Quarry, is another soapstone quarry site on the highest ridge on Soapstone Ridge that received archaeological attention. It was a soapstone bowl quarry recorded by GSU archaeologists in 1975. The site consisted of, “several boulders exhibiting above surface quarrying and several pre-forms”. One large bowl blank was photographed (Dickens and Carnes 1976; Dickens and Barber 1976). Several decades later archaeologist Robert S. Webb and his colleagues returned to the quarry from 1990-1992 and conducted testing and data recovery excavations. That quarry was located in another area of a proposed landfill, which has since been
completed and placed in operation (Webb et al. 1992). Their team conducted data recovery mitigation excavations at Site 9DA67 in 1991 and 1992. Thirty-six square meters were excavated in the quarry area, while 15 square meters were excavated in a quartz quarry.

Site 9DA53, Hardin Quarry

Site 9DA53, the Hardin Quarry, was recorded by Roy Dickens and his colleagues in 1974. Collections from the site were curated at Georgia State University (Dickens and Barber 1976). Over a period of decades the former site owner, Arnold W. Hardin, had collected dozens of soapstone bowl performs from the site, which lined his driveway. This author visited the site on several occasions in the mid-1970s and photographed Hardin’s bowl collection in 1976 (Figure 17). This impressive stone bowl collection was later stolen following Mr. Hardin’s death (Marilyn Kagelmacher personal communication, June 1, 1986). In 1998, archaeologist Jannie Laubser revisited the site for a development survey (Loubser 1998). Loubser prepared a detailed sketch map of the quarry site but conducted no excavations (Figure 18).

![Figure 17. Arnold W. Hardin Soapstone Bowl Collection, 1976 (Elliott 1986:32, Figure 7).](image-url)
Other Soapstone Quarries on Soapstone Ridge and in Northern DeKalb

Seventeen other soapstone quarry sites are known for DeKalb County but only from survey level investigations. Previous investigations at many of these sites included site photography, creation of a site map, and limited artifact collection. For the present study, however, only the available data on the state site forms and in previous publications or professional presentations were used in the following discussion. Soapstone workshops, many of which may represent depleted soapstone quarries with no obvious quarry boulders, are also included in this discussion.

Site 9DA19 is a soapstone quarry recorded by James D. Chapman and Becky Carnes in 1973. Collections from the site were curated at Georgia State University (Dickens and Barber 1976).

Site 9DA20 is a soapstone bowl quarry recorded by Joan C. Rupp, James D. Chapman and Becky Carnes in 1973. A collection from the site made by Chapman in 1971 was curated at Georgia State University (Dickens and Barber 1976). This site was revisited by George Price in 2001, who several broken bowl performs, quartz lithics and historic artifacts (Price 2001). The site was again visited by archaeologists in 2006, who recovered one soapstone bowl preform (Jordan 2006).

Site 9DA21 is a soapstone workshop that was recorded by Becky Carnes and James Chapman in 1975 (Dickens and Barber 1976). The landowner, W. S. Ansley, recovered a soapstone bowl with lug handles was recovered from a rockpile that he built while clearing a field for farming.

Site 9DA26 is a soapstone workshop and old mill site on Blue Creek. It was recorded in 1973 by Joan Rupp, Becky Carnes and James D. Chapman. They reported finding worked soapstone but no evidence of quarrying (Dickens and Carnes 1976).
Site 9DA49 is a soapstone workshop near Site 9DA50. It was recorded in 1974 by GSU archaeologists (Dickens and Carnes 1976; Dickens and Barber 1976).

Site 9DA50 was a soapstone bowl quarry recorded by Dickens and Carnes (1975:23) (Figure 19). Collections were gathered from the quarry in 1974, which were curated at Georgia State University.

Figure 19. Soapstone Quarry, Site 9DA50 (Dickens and Carnes 1975:23, Plate 4).

Site 9DA58 is a soapstone bowl quarry and workshop that was recorded by GSU archaeologists in 1974 (Dickens and Barber 1976). Two bowl performs were collected and others were left on the site. A possibly related Late Archaic campsite (9DA57) was recorded nearby (Dickens and Carnes 1976). Collections from the campsite were stored at the GSU laboratory.

Site 9DA60 is a soapstone workshop recorded by GSU archaeologists in 1974 (Dickens and Carnes 1976). Few details about the site were noted and apparently the archaeologists made no artifact collections from the site.

Site 9DA63 is a soapstone bowl quarry recorded by GSU archaeologists in 1975 (Dickens and Barber 1976). Seven bowl performs were located and three were returned to the GSU laboratory. Six of the seven bowls appeared to have flattened bottoms.

Site 9DA64 is a soapstone bowl quarry recorded by GSU archaeologists in 1975. Artifacts from the site were curated in the GSU laboratory (Dickens and Barber 1976).

Site 9DA65 is a soapstone bowl workshop and quarry. Scattered exposed boulders of ‘coarse’ steatite” and “sparse quarrying evidence” were noted by Carnes and Chapman and one bowl, 18 inches in diameter was noted. Artifacts from the site were curated in the GSU laboratory (Dickens and Barber 1976).

Site 9DA66 is a soapstone bowl quarry that was visited and mapped by GSU archaeologists in 1975. Carnes noted that the site, “Consists of several boulders exhibiting above surface quarrying, scallops, etc.” No collection was made from this site (Dickens and Barber 1976).
Site 9DA69 is a soapstone workshop and quarry recorded by GSU archaeologists in 1975. The site consisted of an, “outcrop exhibiting some above ground quarrying evidence—some scallops, and 1 knob”, but no artifacts were collected (Dickens and Barber 1976).

Site 9DA76 is a soapstone workshop and quarry recorded by GSU archaeologists in 1975. They uncovered one soapstone bowl, which was photographed and they observed “several scallops and knobs on boulders” (Dickens and Barber 1976).

Site 9DA77 is a soapstone workshop that contained “large, scattered outcroppings of steatite” when it was visited by GSU archaeologists in 1975. They uncovered one soapstone bowl, which was photographed and possibly collected (Dickens and Carnes 1976).

Site 9DA80 is a soapstone workshop that contained “scattered boulders and rubble all over area” when it was visited by GSU archaeologists in 1975. They noted several soapstone bowl blanks, which were photographed but no collection was made (Dickens and Barber 1976).

Site 9DA82 is a soapstone bowl workshop on the north bank of Blue Creek recorded by GSU archaeologists in 1975. It contained one large soapstone bowl preform, which was photographed and collected (Dickens and Barber 1976).

Site 9DA83 is a soapstone bowl quarry near Blue Creek that was visited by GSU archaeologists in 1975 (Dickens and Barber 1976). They observed, “a carved knob with a groove in it, still attached to the boulder”, and this boulder was “almost entirely embedded in ground—flush with soil”. The GSU team photographed and mapped the site.

Site 9DA86 is a soapstone bowl quarry on Blue Creek that was visited by GSU archaeologists in 1975 (Dickens and Barber 1976). Jimmy Chapman photographed several knobs, where bowls had been removed from the parent boulders and some artifacts were returned to the GSU laboratory.

Site 9DA99 is a soapstone bowl workshop on a ridge slope above the South River recorded by GSU archaeologists in 1975 (Dickens and Barber 1976). Two soapstone bowls on the surface of this site were mapped, photographed and collected.

Site 9DA101 is a soapstone bowl quarry north of Moore Road that was recorded by GSU archaeologists (Dickens and Carnes 1975:25). The site consisted of, “two quarried boulders on a small hilltop, with scattered rubble at bottom of hill, near creek.” Figure 20 shows a boulder at 9DA101 with two abandoned unfinished bowls attached.
Site 9DA103 is a soapstone bowl workshop near Hale’s Lake that was recorded by GSU archaeologists in 1975 (Dickens and Barber 1976). One large bowl was observed on the site’s surface and was mapped, photographed, and collected.

Site 9DA105 is a soapstone quarry and workshop that was visited by GSU archaeologists in 1975 (Dickens and Barber 1976). The site contained a scalloped boulder that was adjacent to an area containing a bowl fragment. The bowl fragment was collected for the GSU laboratory and a sketch map of the site was prepared.

Site 9DA107 is a soapstone bowl workshop south of Blue Creek, which was visited by GSU archaeologists in 1976 (Dickens and Barber 1976). Archaeologists observed one bowl fragment and one bowl preform, both of which were photographed and measured. The bowl fragment was taken to the GSU laboratory.

Site 9DA109 is a soapstone bowl workshop recorded by GSU archaeologists in 1976 (Dickens and Barber 1976). One bowl fragment was found and collected.

Site 9DA110 is a soapstone bowl workshop and camp recorded by GSU archaeologists in 1976. Several soapstone bowl sherds, amphibolites tools, and chipped stone projectile points were collected from the site.

Site 9DA133 is a soapstone quarry on the Sowell family farm that was visited by Carnes and Chapman in 1977. Their site form noted, “Several soapstone outcrops were observed on two adjoining hilltops, two of the boulders exhibited definite above ground quarrying evidence. Two bowl fragment[s] were also observed. There are several mineral springs in this area”. A collection from the site was taken to the GSU laboratory.

Site 9DA148 is a small soapstone quarry recorded by Jannie Laubser in 1998. It consisted of a single pecked soapstone boulder surrounded by disturbed soil. No artifacts were located or collected.

Site 9DA249, while not a soapstone quarry, did yield one notable soapstone artifact. It was a large soapstone slab bearing petroglyph engravings. This specimen is the only documented petroglyph
from the Soapstone Ridge region. It was found incorporated into a rock wall on a historic house site and was displaced from its original context. The petroglyph displays an irregular oval with three radiating lines (Figure 21).

Figure 21. Soapstone Petroglyph, Site 9DA249 (Elliott 1986:40-41).

Site 9DA360 is a soapstone bowl quarry that was surveyed by George Price for a development project in 2001 (Price 2001). He observed several boulders with bowl detachment scars. He found on soapstone bowl sherds, although his 30 meter interval shovel testing grid identified dense deposits of soapstone quarrying debris.

Site 9DA362 is another soapstone quarry that was recorded by George Price for a development project in 2001. Price observed soapstone outcrops but, despite good surface visibility, he located no soapstone bowl fragments.

Site 9DA411, the Graves Soapstone Site, is the most extensively studied quarry site in northern DeKalb County. It is a soapstone bowl quarry that straddles the DeKalb and Gwinnett County line and was given a DeKalb County designation because maps show it within DeKalb County. D’Angelo noted, however, that the maps are incorrect and the site is actually located in Gwinnett County (D’Angelo 2002a-b, 2003). This quarry site is not within the Soapstone Ridge geological locality. The location is noteworthy as it is directly situated atop the Hightower Trail (9DA410), which is an ancient trading path from the eastern piedmont of Georgia to the Etowah River valley in northwestern Georgia. D’Angelo initially reported “five soapstone bowl scars” and “chips
recovered in shovel tests to 40 cm”. He noted that one soapstone bowl is in possession of the former property owners and one bowl, possibly from this site, is in the Gwinnett County museum in Lawrenceville, Georgia. D’Angelo returned to the site in 2003 and conducted a survey that included shovel testing and the excavation of five test units. These test units revealed clear evidence of bowl quarry scars on the boulders, unfinished bowl fragments and a cache of diabase quarry tools (D’Angelo 2003:Figures 67-68).

Thomas (2011) recorded 9DA455 as a soapstone quarry and workshop site in a reconnaissance survey. She observed. “At least 4 outcrops [that] display likely bowl removal scars. One bowl production failure was found at the bottom of the slope along with two possible preforms there and one possible perform [sic] at the top of the hill”. No excavation was conducted by Thomas.

Valk (2011) recorded site 9DA458 as a soapstone quarry site in northern DeKalb County. She observed “at least six groups of steatite boulders”, with, “pecking visible on three of the boulders”. No excavations were conducted at the quarry site during that survey.

Clayton County Quarry, 9CN48

Clayton County is located in the piedmont province of Georgia and it includes the southern edge of Soapstone Ridge (Pennington 1973). Hopkins (1914) mentions soapstone in Clayton County, although he makes no descriptions or locations of any specific outcrops. A small outcrop of soapstone also was reported on the U.S. Army’s Fort Gillem (formerly known as the Atlanta Army Depot). That outcrop has since been destroyed by development (Elliott et al. 1994).

Only one soapstone quarry is recorded within the Clayton County portion of Soapstone Ridge. Site 9CN48 is a soapstone quarry on the slopes above Conley Creek. The site was collected by Jim Nichols and reported to GSU archaeologists who visited the site and photographed Nichols’ private collection of more than 20 bowl fragments. Three bowl fragments were donated by Nichols to the GSU collection. Carnes and Chapman noted on the site form that the three bowls on this site had flat bottoms (Dickens and Carnes 1975, 1980).

Fulton County Quarries

Fulton County is located in the piedmont province of Georgia and is dominated by metropolitan Atlanta. The eastern end of Soapstone Ridge, which is predominately in DeKalb County, extends into Fulton County (Pennington 1973).

Hopkins (1914:178-179) makes only a passing reference to soapstone outcrops in Fulton County in his description of a formation near Lakewood Fairgrounds. He described a small outcrop of pyroxenite, which contained some soapstone that was located, “on the southeastern bank of the lake at Lakewood and about 300 yards south of the bath house”. He noted that the soapstone had no commercial value. This outcrop in Lakewood is not part of Soapstone Ridge.

Five soapstone quarries are recorded in Fulton County. These include 9FU49, 9FU105, 9FU145, and 9FU147 (Dickens and Carnes 1980; Elliott 1986; Bloom et al. 1989). Early geological reference to soapstone in Fulton County is mentioned by Campbell and Ruffner (1883:45-46) but no specific outcrops are cited.
Site 9FU49 is a large soapstone bowl quarry that contained “large outcrops of soapstone boulders exhibiting some above surface quarrying activities scattered at the top of the summit”. GSU archaeologists took one photograph of a soapstone boulder showing quarrying evidence. Garrow & Associates archaeologists revisited the site in 1986 and noted, “Several bowl removal scars were detected and one soapstone bowl blank was located, photographed and left in place”. The bowl blank was found, “on the western slope of the knoll near the summit, but quarrying activity appeared to continue around the knoll to the eastern side” (Elliott 1986:42).

Site 9FU105 is a soapstone quarry and workshop recorded by Linda Carnes and William McKinley in 1977. The site was described as in a relatively intact hardwood forest but few other details were provided other than the site’s location. A collection of artifacts from the site was stored at GSU.

Site 9FU145 is a small soapstone bowl quarry on a knoll just northeast of Site 9DA139. Marvin Smith located the site during a survey for the Live Oak Landfill and he noted, “Two unfinished soapstone bowls were seen on the surface, and a third was found in a shovel tests”.

Site 9FU147 is a small soapstone bowl quarry on a knoll top and southeastern slope. It was located in 1986 by Marvin Smith in the Live Oak Landfill survey. Smith noted, “Evidence of bowl removal was detected on several boulders and a nearly finished, but broken soapstone bowl was located, but not collected” (Elliott 1986:40).

Soapstone was reported near Bolton, Georgia in an 1886 real estate advertisement for a 20 acre tract located 1.75 miles from Bolton on the Western and Atlantic Railroad (Atlanta Constitution 1886:8). Bolton is located just south of the Chattahoochee River. The area, particularly the land fronting the railroad line, is mostly developed urban land today and it is unlikely that this soapstone deposit has survived.

The Atlanta Talc and Soapstone Mining and Manufacturing Company petitioned for a business incorporation charter in Fulton County, Georgia in September, 1883 (Atlanta Constitution 1883:3). By May, 1884, the company was headquartered above the Gate City National Bank in Atlanta (Atlanta Constitution 1884a:3). By July, 1887, the company boasted that it operated mines in North Carolina and North Georgia and that its pure white talc was “pronounced by Experts the Finest and Purest in America”. The company also offered, “all grades of soapstone finely powdered or in Bricks, Square, Slabs or Other Shapes” (Atlanta Constitution 1887:37).

Soapstone outcrop and quarry data from the rest of Georgia is presented in the following chapter. This discussion is organized alphabetically by county.

Baldwin county

Baldwin County is located in the piedmont province of central Georgia. No aboriginal soapstone quarries are reported for Baldwin County, Georgia. Baldwin County may contain soapstone outcrops that were quarried in the 19th century. The Macon Weekly Telegraph (1838:2) reported, “Steatite occurs on the plantations of Mr. Newell and Mr. Perry, which might be rendered serviceable for hearths, jambs, furnaces, &c.” No soapstone (or steatite) deposits or quarries have been identified for Baldwin County otherwise. The locations of the plantations of Messrs. Newell and Perry, and any soapstone research potential associated with those locations, remains a promising subject for future research.
Banks County

Banks County is located in the upper piedmont in northeastern Georgia. No soapstone deposits have been described by geologists for Banks County. A portion of the Gillsville Road, or Georgia Highway 52, is identified on maps as Soapstone Road. That section of the road straddles the Banks-Jackson county line, about 2 km southeast of the common boundary with Hall County and southwest of Grove Creek (Mapper.Acme.com 2013). No archaeological sites are recorded in that vicinity. Real estate advertisement for a 182 acre tract noted that it was located on Soapstone Mountain in northern Banks County, possibly in the Kelley Mountain vicinity, which is southwest of Soapstone Mountain in adjacent Stephens County (southernheritageland.com 2013). Three Archaic soapstone bowl quarries have been located by archaeological survey in Banks County. Unfortunately, these areas have all been destroyed by land modification.

9BA65, Roundabout Quarry

Lilly (Fryman et al. 1993) discovered a bowl quarry (9BA65), the Roundabout Quarry, in a survey for a proposed landfill development on Carlan Creek, east of Homer in Banks County. Jordan and Webb (2002, 2003) reported on subsequent testing and data recovery excavations at the Roundabout quarry site 9BA65). Jordan and Webb described the soapstone quarry at 9BA65:

The data recovery excavations at 9BA65 consisted of block and feature excavations, as well as site mapping and photography….Excavations at 9BA65 focused on issues relating to the technological processes required to manufacture a soapstone vessel by examining the quarry features and their relationships to intact archeological deposits and other cultural features. We also obtained information that will enhance the understanding of the technology used to manufacture the tools used during soapstone quarrying and vessel manufacture. These results were compared with data on the existing ultramafic extraction/reduction/refinement paradigm obtained from other soapstone quarry archeological studies. Determining when Site 9BA65 was active, when the site was used for soapstone vessel manufacture, and if the use of space, technology, and/or style vary through time were also important considerations which we attempted to address by this research. Site 9BA65 is a Late Archaic soapstone quarry. Minor Woodland/Mississippian and Historic period presences were also detected. Soapstone bowls, pans, and cups were the primary products of the Late Archaic quarrying and manufacturing efforts at 9BA65. Some inferences are proposed regarding possible sources of vessel styles, site chronology, and possible destinations of soapstone products based on vessel morphology. Quarry tools ranged from formal, to semi-curated, to expedient. The current study produced very few lithic items that can be classified as non-local. The formal tools were made from diabase and amphibolite, while the less formal and expedient tools were made primarily of locally available amphibolite and quartz. The large soapstone outcrop was heavily exploited, but not exhausted. Quarriers used the soapstone which was above-ground during the Late Archaic, and excavated around the base of the outcrop to expose more raw material. Soapstone bowl preforms left behind on the outcrop indicate that the outcrop contained
workable soapstone when quarrying ceased at this site. Discreet soapstone bowl production and quarry tool manufacturing workshop areas were identified around the outcrop. No evidence of habitation was identified at 9BA65 (Jordan and Webb 2003).

In 2005, Jordan reported two other bowl quarry sites, 9BA105 and 9BA109, in Banks County. Jordan described Site 9BA105, which was located 1 km west of 9BA65, as a large soapstone outcrop surrounded by smaller boulders many of which showed, “evidence of manufacture and removal of soapstone bowls, unfinished bowls and expedient quarry tools”, on the surface. Soapstone rubble was located in many shovel tests (Jordan 2005). Site 9BA109 is a bowl quarry with many boulders exhibiting bowl removal scars. Their efforts at this site yielded one soapstone vessel sherd and one vessel preform. Many unfinished bowls were identified on the surface but were not collected (Jordan 2005).

Carroll County

Carroll County is located in the piedmont province of western Georgia. Numerous soapstone outcrops and aboriginal quarry sites are known for this county. Hopkins (1914:284) reported a soapstone outcrop on the property of E. Rodgers and T.J. McLendon, one mile east of Villa Rica at New Hope Spring in Carroll County. He noted the presence of a small pit, where a slight amount of asbestos was visible in exposed rocks. Hopkins (1914:284-285) reported a soapstone outcrop on property of Mrs. L.C. McPherson, three-fourths mile west of Villa Rica in eastern Carroll County. He also noted soapstone was present in the cut of the public road near William Boyd’s house in this same general vicinity of Carroll County. He also noted that these soapstone outcrops continued into Douglas County, east of Villa Rica. Hopkins (1914:285-286) reported considerable soapstone (chloritic schist) outcrops on J.W. Pitts’ property (Lot 110, 5th District, Carroll County), J.W. King’s place, further southwest on H.L. Worley’s property, and adjacent lots, 1.5 miles east of Carrollton. Hopkins identified this outcrop as an aboriginal stone bowl quarry, as he wrote, “The presence of fragments of vessels made of soapstone shows that the Indians made use of these deposits”. He noted that this deposit was used locally for fireplaces and other items. Hopkins (1914:286-287) reported a small soapstone deposit on the E.S. Lyle property, 2.5 miles south of Carrollton. Cook (1978) also reported the present of soapstone outcrops on the Lyle property, which he listed as 2.8 km south of Carrollton. Hopkins (1914:287-288) reported soapstone deposits on the property of J.W. Stallings, Lot 32, 10th District, Carroll County, 3.5 miles south of Carrollton. Hopkins observed evidence of a small amount of prospecting on the property. Hopkins (1914:283-284) reported soapstone outcrops on the Freeman property. The exposure on the W.A. Freeman property was smaller than what he observed on the Stallings property. Hopkins (1914:288-289) reported soapstone on the W.W. Smith property, one-half mile south of Burwell Station on the Bowdon Railway and eight miles from Carrollton. He also noted soapstone on several places west of Burwell Station, including Bert Crawford’s place, five miles northwest of Burwell on the east side of Little Indian Creek.

At least seven soapstone quarries are documented archaeologically for Carroll County. Archaeologists from West Georgia College and the Auburn University at Montgomery studied a cluster of soapstone quarries in Carroll County in the 1960s and 1970s. These quarries were located on outcrops situated on upland ridges of the Tallapoosa River watershed, a tributary of the Alabama River. None of the Carroll County soapstone quarries have been investigated beyond the
survey level. The most notable of the Carroll County quarries is the Burns Rock Soapstone quarry, 9CL18 (Figure 22). It was first recorded by John Whatley [Note: John Whatley was an amateur historian and relic collector in Carroll County, not to be confused with another amateur archaeologist named John Whatley from eastern Georgia.] (Whatley 1968a-b; Sheldon 1976a-b; Larson and Simpkins 1976). This site is located west of Burns Road and east of Carrollton, Georgia. Photographs of this quarry clearly reveal it was contained a substantial stone bowl industry. The Whatley collection from this site includes a soapstone pipe.

The Hutcheson Steatite Quarry, located northeast of the Burns Rock Quarry, was surveyed by archaeologist Craig Sheldon and others (Sheldon 1976a-b; Larson and Simpkins 1976). This is another large quarry site, but no details of it were located by the present research. The Margaret’s Joy Site, 9CL73, was described as a possible schist quarry. This site was located between the Burns Rock and Hutcheson quarries. Although Sheldon’s limited excavation at this site failed to yield proof of quarrying activity, he noted that the site, “is situated close to a line of five’ recorded aboriginal quarry locations which run north-northeast to south-southwest through central Carroll County” (Sheldon 1978:121-125). Site 9CL105 is a prehistoric soapstone quarry on the lower course of Snake Creek, near its confluence with the Chattahoochee River. The site was recorded by John Whatley, Jr. Site 9CL199 is a soapstone outcrop that was likely quarried prehistorically. It consists of a small soapstone outcrop in a field (Larson and Simpkins 1976). Site 9CL213 is a prehistoric soapstone bowl quarry, where at least three quarrying areas were observed and one bowl blank remained in place on a boulder. The bowl blank measured about 28 inches in outside diameter (Larson and Simpkins 1976). Site 9CL227, or the Powell Hardware Soapstone Site, is a prehistoric soapstone quarry recorded in 1987 by Daniel Simpkins. No documentation, other than the state site form, was located for this site. Simpkins’ notes on the site form indicate it was a bowl quarry that was disturbed by a bulldozer. Simpkins recovered a soapstone bowl preform, measuring 20-24 inches in diameter at the rim and 18 inches in height. This artifact is curated at the Waring Laboratory in Carrollton.

Cressler (n.d.) provides color photographs from two soapstone bowl quarry boulders in Carroll County. These are reproduced in Figures 23-25.
Figure 23. Soapstone Boulder with Multiple Bowl Removal Scars, Carrollton, Georgia (Cressler n.d.).
Figure 24. Soapstone Boulder with Bowl Removal Scar, Carrollton, Georgia (Cressler n.d.).
Cherokee County is located in the piedmont province of northern Georgia. Although Cherokee County is known to possess soapstone outcrops that were quarried historically, no aboriginal soapstone quarries have been recorded. An 1860 real estate advertisement for a 1,700 acre tract in Cherokee County noted that the property included “Iron ore, Lime, Marble, Soapstone, [and] Rock with Tin in it” (Summey 1860:1). The exact location of this 1,700 acre was not specified in the newspaper advertisement, however. Hopkins (1914:277) noted that soapstone was formerly quarried on the southwest corner of Land Lot 444, 15th District in Cherokee County, two miles southwest of Holly Springs, which was then operated as the Verd Antique Marble Company. Hopkins (1914:278) reported soapstone outcrops on Lot 567, 15th District in Cherokee County, two miles southwest of the Verd Antique Marble Company’s quarry. Hopkins (1914:278-279) reported a small soapstone deposit on J.J. Howell’s place, two miles northeast of Toonigh, on Lot 554, 15th District, 2nd Section in Cherokee County. He described the stone of “very poor grade and
of no commercial value”. McCallie (1910:40-41) noted limited talc mining near Ball Ground in Cherokee County. The McAfee Soapstone Quarry was a historic mining operation located 8 km West of Canton in Cherokee County, Georgia (Hopkins 1914:305). However, Hopkins did not consider this outcrop to be soapstone, rather he classified it as a schist.

Cobb County

Cobb County is located in the piedmont province of northern Georgia. The Sprayberry Rock Soapstone Quarry (9CO416) in Cobb County was located by Larry Meier (1986). Meier had recorded the site as 9CO309, but that site number has been superseded by the designation 9CO416. The collection from this prehistoric quarry site was reexamined in 1995 by New South Associates, who completed a state site form for this site. Brief notes on the site form record that the site consisted of an “outcropping of chlorite-schist and soapstone with two vessel extraction areas and nutting holes. One w/ 3 petroglyphs (concentric circles)”. More recently, Loubser, Hudson and Greiner (2002) documented the petroglyphs and soapstone bowl quarry evidence at 9CO416. Figure 26 is a recent photograph of Sprayberry Rock (Cressler n.d.).

An 1884 newspaper story repeated from the Acworth, Georgia News noted the presence of “pieces of soapstone and earthen ware vessels”, which had been exposed by recent floods, on the W. J. Palmer plantation near Acworth. The reporter noted that, “Mrs. Palmer has a soapstone bowl, which was left by the Indians, and she has used it twenty years for a chicken trough” (Atlanta Constitution 1884b:142). While this reference does not directly pertain to a specific soapstone quarry or outcrop, the presence of a complete (or nearly complete) soapstone bowl suggests that a quarry is located near the former Palmer plantation in northern Cobb County.
Columbia County

Columbia County is located in the piedmont province of eastern Georgia. Geological study of soapstone deposits and aboriginal soapstone quarrying in Columbia County has a rich and varied history. The earliest exploration of these deposits was by an antiquarian and proto-archaeologist, Roland Steiner. Steiner collected many soapstone bowl and perforated slab fragments from the
quarried outcrops and nearby occupation sites. Steiner was particularly intrigued by soapstone slabs bearing multiple small pits. Since 1980, the author has studied Steiner’s activities in Columbia County, from his meager publications, numerous letters to archaeologists and museum curators and the artifacts themselves. Steiner’s primary focus was on the soapstone outcrops and shoal areas of the Savannah River near its confluence with Kiokee Creek. These areas are recorded as sites 9CB2 and 9CB23, and are subsequently discussed.

Charles C. Jones, Jr. (1880:350) briefly described a soapstone bowl quarry near present-day Grovetown, Georgia: “About two miles northeast of Forrest Station, on the Macon and Western Railway, a ledge of soap-stone crops out, and here was an extensive pre-historic factory of vessels from this material. From the quantities [sic, quantities] of broken utensils still littering the locality, it is manifest that the manufacture must have been long continued and great, far exceeding any possible local demand”. Forrest Station is a former placename for a location on the railroad route, just south of present-day Grovetown. If one follows the railroad corridor for a distance of two miles from its former location, we are able to determine the approximate location for the quarry site described by Jones. A wooded section along the train line, south of a large industrial facility and west of residences along Walton Drive, may harbor archaeological remains of this quarry (Figure 27).

![Figure 27. Approximate Location of Soapstone Quarry in Columbia County, as Described by C.C. Jones, Jr. (1880:350).](image)

Geologist Oliver Hopkins described several soapstone deposits in the county. Hopkins (1914:299) reported “one of the largest exposures of soapstone in Columbia County” was, “south of Phinizy at Walnut Grove Church” on the properties of H.D. Ramsey, Julius Hill and Buck Story. He noted, “Few natural outcrops are to be seen, but the surface is thickly strewn with grayish, rounded fragments of soapstone”. Hopkins noted the local use of soapstone for, “foundation stones, fireplaces, chicken troughs, etc.”. The approximate location of the Walnut Grove soapstone deposit is shown (A) in Figure 28.
Hopkins (1914:299) noted a similar outcrop on Dr. W.B. Crawford’s place, one mile west of this Walnut Grove Church area in Columbia County. The approximate location of the Crawford place soapstone outcrop is shown (A) in Figure 29. Surprisingly, the road west of this indicated location still bears the name Crawford Plantation Road.

Hopkins (1914:301) reported several small areas strewn with soapstone fragments on the properties of Julian Lampkin and D.H. Howell, one mile northeast of Appling in Columbia County. Hopkins added, “The areas here are small, not more than one-half acre in either case”. The very approximate location of these two outcrops is shown (A) in Figure 30.
Burt and Dixie Mountain Quarries, Site 9CB23

Geologist Oliver Hopkins (1914:300-301) provides a description of this soapstone deposit, which he identified as Burte and Dixie mountains. He noted, “Only along the edge of the mass is soapstone developed to any extent. Here it is not exposed in place, but fragments are strewn over the surface”. Hopkins (1914:301) also noted a soapstone exposure in the public road near the house of Granderson Johnson. He distinguished between this outcrop and the Burt and Dixie mountain deposit, noting, “it is smaller and runs parallel to it”, and he added, “This small exposure shows the best grade of talc found in the county”. Hopkins (1914:301-302) noted soapstone occurrence intermittently to the west of the Savannah River for 11 miles from the above-described deposits. Hopkins provide no specific locations for these outcrops.

Site 9CB23, in a soapstone quarry located on Burt and Dixie Mountains near the confluence of Big Kiokee Creek and the Savannah River in Columbia County. The site was first recorded by George Lewis in 1977. Lewis completed the site form and took two photographs of worked soapstone specimens (Figure 31). Lewis named it the Burke Mountain Quarry (Elliott and Doyon 1981; Wood et al. 1984). Soapstone samples from 9CB23 were included in a pilot Neutron Activation Analysis study, as described by Elliott (Wood et al. 1984: Appendix 1).
Site 9CB62 is a soapstone quarry located along Marshall Road in Columbia County. The site was recorded by George Lewis and David P. Robinson. The site form noted that “200 lbs of soapstone” were collected from the road for “use by SCIAA-SRP-ARP”. This site is located above Hickory Branch, a tributary of Greenbrier Creek, southwest of the Burkes Mountain quarry. Site 9CB62 contains large nodules and slabs of high-grade soapstone of better quality than the soapstone observed at 9CB23.

The Kiokee Creek site (9CB2) is located downstream on the Savannah River levee and terrace, east of the soapstone ore bodies. This midden site was first described by Jones (1873). The thick sand deposits above the shell midden may conceal a large ring of shell from a Native American village; such a site at that distance from the coast would be an extremely rare find. The river sand that overlies the archaeological remains helped to preserve the site all these years. Items recovered from the Kiokee Creek site, such as the engraved bone tools, soapstone perforated slabs, and chipped stone tools, suggest that it is a pure deposit from the Stallings Island era. The bone preservation on the site is remarkable. This degree of preservation is most unusual in the Savannah River drainage. The mussel shell has preserved rare items made of bone such as ornate carved hairpins depicting art and culture. The aboriginal pottery that is at Kiokee Creek is Stallings Island type pottery—the oldest in North America, dating back more than 3,000 years. The Kiokee Creek sites contain evidence of soapstone manufacture and trade and the important role it played in Native American society, economy, and culture. Soapstone from this quarry was probably traded hundreds of miles to distant hamlets and villages.

Charles C. Jones, Jr. described the site at the mouth of Kiokee Creek in the 1800s and he noted that many hundred soapstone slabs had washed out during a flood. From his description, it sounded as though the site had been completely destroyed by flooding. Colonel Jones assessment of the Kiokee Creek site’s demise was premature, however, as Dr. Steiner’s subsequent research demonstrates. Jones’ collection from the Kiokee Creek site is preserved in northern museums. Roland Steiner’s collection from the site eclipses that assembled by Jones. Notable collections from the Kiokee Creek site and adjacent soapstone quarries are housed in major museums around the world, including such obscure places as Siberia, the Panama Canal Zone, and Germany. Most of these foreign museum collections, as well as those in many museums in the United States, remain unstudied.

The Kiokee Creek shell midden and associated soapstone quarry and workshop are very unique. These archaeological sites are located within one of the earliest population centers in Georgia and eastern North America (circa 1500 B.C). The Kiokee Creek sites are a vital part of Georgia’s prehistory and history; a story the public knows little about. In order to tell this story, however, there needs to be additional investigations. This can only be done through historical research and professional archaeological excavation, which will allow the discovery, understanding, and interpretation of this story. Exciting new archaeological techniques would contribute wonderful chapters of this story. The Pollard Family’s sponsorship of this project would be a continuation of its stewardship of this unique resource and would be an opportunity to open a window to the past. Through this window we will be able to view life on the Savannah River 3,000-4,000 years ago.

In summary, the Late Archaic Period of Georgia's prehistory spans from 3,500 B.C. to about 1,000 B.C. The Late Archaic was characterized by hunting wild animals, gathering wild plant foods, and cultivation of crops, such as squash and sunflower. People lived near rivers and large streams and
may have depended heavily on the resources in the river such as fish that traveled upstream to
spawn. The subsistence strategies developed during the Late Archaic Period laid the foundation
for agricultural groups that flourished during the later Woodland and Mississippian Periods in
Georgia. Occupation during the Late Archaic Period is pronounced throughout the Savannah River
watershed, and the settlements are particularly dense near the Fall Line (around Augusta and the
Central Savannah River Area (CSRA). Archaeologists have made several subdivisions within the
Late Archaic period:

(1) Savannah River Phase-- 3,500 B.C. to 2,200 B.C. This was a period prior to the introduction
of pottery. Artifacts from this phase include large stemmed projectile points, atl-atl (throwing
stick) weights, chipped stone drills, grooved stone axes, and perforated soapstone cooking slabs.
Many human burials dating to this phase were excavated on Stallings Island.

(2) Stallings Island Phases 1 and 2-- 2,200 B.C. to 1,200 B.C. This period is marked by the
introduction of Stallings Island Pottery. This pottery is the earliest known in North America.
Stallings Island pottery has attracted worldwide interest in the development of ceramic technology,
and will probably continue to do so in future years. The artifacts seen during the earlier period
continued to be made, but certain more elaborate artifacts such as carved bone pins were also
produced. Our understanding of this culture has grown, but there is still much that we do not know.

At Stallings Island a unique type of pottery was identified which was termed--"Stallings Island
Fiber-tempered pottery". This pottery is very thick and had fiber (probably Spanish Moss) added
to the clay to help it stay together during firing. These ceramics are crude and may have broken
easily; in the early days people did not know how to make good pottery and the development of
good pottery took over a thousand years.

The Stallings Island pottery includes plain and decorated surfaces. Decorations include incised
lines and punctates. The designs include linear, geometric, spiral and curvilinear motifs. The
vessels are in the form of large bowls-- no complete vessels have ever been found. As techniques
for dating the pottery became available, the antiquity of this pottery type became apparent. We
now know that this pottery was produced for a period of about 1,000 years from around 2,200 B.C.
until about 1,200 B.C.

Stallings Island is one of several Archaic period freshwater mussel shell heaps that dot the
Savannah River at the Fall Line, which is where the piedmont hills meet the coastal plain. Stallings
Island takes its name from a late eighteenth century landowner, of whom little is known. Native
Americans probably had their own name for the island, but that name is lost forever. For the past
4,700 years or so, this island was an important place and probably had special meaning for native
peoples. This reverence continued into historic times, when it was used as a burial place for
southeastern tribes, among them the Yuchi.

Stallings Island was the largest and most concentrated of the shell midden sites on the CSRA and
is important internationally because it contains the earliest pottery in North America and among
the oldest in the world dating back some 4,000 years. This early pottery is recognizable by the
distinctive holes left where the fiber burned away during the firing process. This heavy, thick
pottery was given the name Stallings Island, where it was first described. Excavations at Stallings
Island were described years earlier by C. C. Jones, Jr. and the Stallings Island site has served as a "type culture" site for the southeastern U.S.

The artifact collection from the Kiokee Creek shell midden area, which is on display at the Pollard Lumber mill office demonstrates a range of artifacts quite similar to those excavated from Stallings Island, as described by William Claflin in 1931. The Stallings Island culture of the CSRA has been described by numerous archaeologists through the years including Charles Fairbanks and James B. Griffin in the 1940s, Joseph Caldwell and Carl Miller in the 1950s, Joffre Coe in the 1960s, Ripley Bullen, James Stoltman, Donald Crusoe, and Chester DePratter in the 1970s, and Rowe Bowen, Dean Wood, and Dan Elliott in the 1980s. In the 1990s archaeologists Kenneth Sassaman and Dan Elliott began a focused study of the Stallings Island culture with excavations at Mims Point (Edgefield County, South Carolina), Stallings Island, Lovers Lane (Richmond County, Georgia) and several other midden sites in the CSRA.

The archaeological remains at Stallings Island have attracted the curious for more than 150 years. The fires were barely cold on southeastern aboriginal sites before they became the object of the antiquarian intellectuals of the Victorian era. In the 1850s, Stallings Island was the subject of archaeological exploration by Georgia’s first archaeologist, Colonel Charles C. Jones, Jr. Colonel Jones excavated several areas near the crest of the shell mound and discovered dozens of human burials. Although Jones’ archaeological methods were crude by modern standards, his description of the site was an important account and it served as inspiration for many generations of archaeologists to come. Jones’ first excavations at the site are described in his book, Monumental Remains..., which was published in 1861, and additional references to the site are found in his more widely read Aboriginal Remains of the Southern Indians, Particularly of the Georgia Tribes, which was published 14 years after the Civil War—a war in which Jones took no small role. Some of Jones’ artifacts from Stallings Island are at the American Museum of Natural History in New York and a few are at the Smithsonian Institution in Washington, but they have not been fully researched. Colonel C.C. Jones, Jr. was the first of many explorers who sought to unlock the secrets of Stallings Island. He was followed by a cast of characters that included: Roland Steiner, William Claffin, C. B. and Harriet Cosgrove, Charles Fairbanks, William Edwards, Joseph Caldwell, Don Crusoe, Chester DePratter, Bruce Greene, and Ripley Bullen. Despite repeated visits to the site by archaeologists our understanding of Stallings Island was infantile as of 1999.

Another archaeologist to visit the Kiokee Creek area in the 1970s was Richard Smith from the University of North Carolina. Unfortunately Mr. Smith left the archaeological profession before completing his research, although a draft of his dissertation has survived (Smith 1974). Since Mr. Smith’s investigation few archaeological studies have been undertaken in the Kiokee Creek/Uchee Creek vicinity, although several important studies have been conducted a few miles downstream. Archaeologists at the University of South Carolina also made collections from Stallings Island prior to 1970 (Gardner 1970).

In the 1980s and early 1990s, the central Savannah River valley experienced a resurgence of interest in the Late and Terminal Archaic (the period from 3000-1000 B.C.) (Elliott and Doyon 1981; Elliott 1984, 1995; Elliott et al. 1994; Sassaman 1999). In 1991, a research initiative known as the Stallings Archaeological Project was launched by Dr. Kenneth Sassaman, who roamed the terrain surrounding Stallings Island to excavate at several other shell midden sites and the body of information about the Archaic period grew rapidly. With the support of the University of South
Carolina and the Department of Energy’s Savannah River Archaeological Research Project, the Stallings Archaeological Project included: excavations, many additional radiocarbon dates, subsistence studies, forensic studies, and examination of older artifact collections. It was against this backdrop that the 1999 research project at Stallings Island was implemented.

Stallings Island is the only archaeological site in Georgia that is currently recognized by the federal government as a National Historic Landmark. Since the site achieved this status in the early 1970s, however, it has experienced significant levels of destruction from vandals, professional grave robbers, unwitting amateur collectors, and even professional archaeologists. The many excavations at Stallings Island, both professional and illegal, have destroyed major portions of the site’s contents. Other areas must be sought to conduct scientific research on the Stallings Island culture. Many sites of this type were flooded by the creation of Clark Hill and Russell Lakes. Development in the Augusta area has destroyed others. Recent vandalism in the Sumter National Forest has badly damaged another site of this era. Sites of this period in the Coastal Plain of South Georgia are currently being looted for their “neat relics”. The number of sites containing information about the Stallings Island people is rapidly dwindling. This is another reason why the site on the Pollard property is so important.

This important landmark site was given another status of recognition when it was acquired by the Archaeological Conservancy through a landowner’s donation. One result of this change in ownership was the implementation of a long-term site management and protection program, which included ongoing archaeological research. Ken Sassaman and the University of Florida Field School conducted excavations at Stallings Island for the Archaeological Conservancy through a National Geographic Society research grant in Spring 2000. That effort revealed many surprises about that archaeological site, as well as many advances in our knowledge of the Stallings Island culture (Sassaman and Elliott 1995; Sassaman et al. 1996).

Residential development in the central Savannah River region, particularly in Columbia County, has resulted in the destruction of many archaeological sites. Several Cultural Resource Management surveys were conducted to mitigate this land use trend. Recent examples of archaeological projects that address this need include the Euchee Creek Greenway, Grovetown (Battle 2001), the Residential Development, Whisenhunt Children, Inc. (Battle 2003), the Bartram Tract (Cowie and Elliott 1999), and the Riverwood Development (Price and Elliott 1999). This rate of rapid growth and landscape alteration is likely to continue for decades. Consequently, the remaining archaeological sites on the Pollard family property may represent the last opportunity to examine these vestiges of the Archaic past in a controlled-scientific, scholarly way.

Coweta County

Coweta County is located in the piedmont province in western Georgia. Hopkins (1914:182-183; Bowles 1937:29) reported soapstone outcrops in a small vein on the J.A.R. Camp property on Lot 211, 2nd District, two miles southeast of Moreland. He noted that asbestos prospecting pits had been opened in this area. No prehistoric soapstone quarries have been reported for Coweta County. The area southeast of Moreland would be an excellent starting point in the county for a targeted archaeological survey.
Dawson County

Hopkins (1914:277) reported a soapstone deposit on the Gainesville-Dawsonville Road, 3.5 miles southeast of Dawsonville. He noted that “a small opening had been made in the southwestern end at the dike”, but it was only of local value. Hopkins described two bands of hornblende gneiss and some associated soapstone in the southeastern part of Dawson County, “one about 2 miles, and the other 3 ¼ miles, southeast of Dawsonville”. He noted that this soapstone was of low grade and used locally for, “chimneys, window sills, for walling wells, and similar purposes”. Soapstone also was used in historic times in Dawson County in house construction. The Pompey Strickland house, constructed about 1900, includes soapstone in its construction (Vanishing Georgia 2013). Archaeological evidence of soapstone bowl quarrying in Dawson County is known, but is not fully documented in the archaeological site files. A photograph of a soapstone boulder with quarry scars at a soapstone bowl quarry in Dawson County was featured in a U.S.D.A. Forest Service brochure. No state site form for this quarry site has been located.

Douglas County

Geologists John Lyle Campbell and William Henry Ruffner (1883:45-46) reported finding good quality soapstone in Douglas, Fulton and Paulding counties, Georgia. They wrote:

Talc—Soapstone—(Steatite).—The term *talc* is usually limited to the crystalline, foliated variety of a silicate of magnesia, while *soapstone* or *steatite* is applied to the massive variety of the same mineral. The foliated kind has usually some shade of green, but is sometimes white or light gray. It feels greasy, and is so soft as to be easily impressed with the finger-nail. The compact form (soapstone) is generally gray, or greenish gray, and is so soft when freshly quarried as to be easily cut, sawed or turned to any desired shape, but hardens greatly on exposure.

It stands heat so well as to be largely employed in place of firebrick for lining furnaces, stoves and fireplaces. The finer qualities are sometimes used, in admixture with kaolin, as an ingredient in the manufacture of porcelain. An impure variety called ‘pot-stone’ (*lapis ollaris*) has been employed as the material out of which cooking utensils were carved. Many pots, dishes and vessels of different shapes are found among the ‘Indian relics’ of this country. The best specimens of soapstone that we saw were from Douglas, Fulton and Paulding counties, Georgia. It has been quarried successfully about five miles south of Douglasville.

Among the metamorphic rocks of Cleburne and adjoining counties of Alabama, beds of soapstone are found; and along the bed of rocks extending from Cleburne towards the southwest, many excavations are reported, from which the aborigines are believed to have mined this mineral for making their domestic implements.

Hopkins (1914:283-284) reported a soapstone outcrop in western Douglas County on property of T.J. Carnes, 2.5 miles east of Villa Rica, between the public road and the Southern Railway. He noted that this deposit was used locally. Its approximately location is shown (A) in Figure 32, although its present existence awaits confirmation by archaeological survey. Hopkins (1914:285) also noted the existence of soapstone outcrops on several other properties near Villa Rica.
including Grady Roberts, Solomon Kilgore, and farther northeast, on the estates of Jane W. Stone and W.B. Candler. Further historical research is needed to ascertain the locations of these properties. Hopkins (1914:283) reported a small soapstone outcrop that crossed the road leading north from Douglasville, 1.5 miles south of Brownsville in Douglas County, Georgia. The approximate location of this outcrop is shown (A) in Figure 33. Hopkins (1914:283) also reported “an old soapstone quarry” on the property of Bud Yancey (the Abercrombie place) 6.5 miles south of Douglasville in Douglas County. He noted it was a small quarry that was used locally to build fire-places. More historical research is needed to determine the approximate location of the Yancey/Abercrombie soapstone deposit. While no aboriginal quarries are known for Douglas County, geological data provided by geologists offer several promising starting points for a targeted archaeological search. The Bear Creek watershed, five miles south of Douglasville, contains large wooded areas that may harbor intact quarry sites.

![Figure 32. Approximately Location of Douglas County Soapstone Outcrop, Former Carnes Property (Hopkins 1914:283-284; Mapper.acme.com 2010).](image-url)
Elbert County

Several soapstone outcrops and aboriginal quarries are known for Elbert County (Hopkins 1914:294-296; Wood et al. 1986:305-317). Hopkins described a prominent soapstone outcrop on the property of T.P. Jones (Lot 190, Longstreet District), 13 miles east of Elberton and one-fourth mile east of Bethlehem Church. He also notes other chloritic rock outcrops in this general vicinity on the properties of L.R. Robinson, J.N. Worley and Paul Blackwell. Hopkins also notes outcrops on the J.E. Calhoun estate, “where Beaver Dam Creek enters the Savannah River, and one mile south of the Seaboard Air Line Railroad”. Although Hopkins states that, “No talcose rocks are present”, he mentions that, “a large amount of greenish-gray chloritic rock is to be found projecting above the ground and scattered over the surrounding surface”, and that, “There is quite a variation in the hardness of the rock, but the greater portion is too hard to be of value as a soapstone”. Hopkins added, “Other occurrences of similar nature are to be found in the neighborhood”.

The author visited the Calhoun property described in 1914 by Hopkins during archaeological mitigation efforts in 1981. At that time, however, massive ground disturbances were underway as part of the relocation and elevation of the railroad line prior to reservoir inundation. No intact rock outcrops were observed. A large, unfinished elbow-shaped soapstone smoking pipe preform was observed on the surface, however, which may indicate that the soapstone in this vicinity was used to make pipes, rather than bowls.

Two aboriginal soapstone quarry site have been confirmed in Elbert County. The largest of these is Site 9EB110, a soapstone bowl quarry in the Lake Russell vicinity that was recorded by Linda H. Worthy in 1981. The site contained, “quarried boulders, soapstone fragment piles, quartz quarry tools, bowl fragments and blanks”, that were associated with a large soapstone outcrop that extended from the Savannah River about 1.5 miles. Worthy noted that the site contained, “many isolated outcrops peripheral to the main site”. Soapstone samples were collected from this site by the author in 1981. These were included in Southeastern Wildlife Services’ neutron activation
analysis (NAA) pilot study (Wood et al. 1986:305-317). A soapstone bowl sherd and a double bowl preform were collected by the author from the quarry site during that visit. No excavations were conducted at 9EB110 prior to the completion of the Richard B. Russell dam. A portion of the quarry site may extend upslope onto areas that were not submerged by the creation of the lake.

Another soapstone quarry in Elbert County was observed by the author in 1983, in the final days before Lake Russell was filled. This quarry site is an anomaly, compared to most previously described soapstone quarries in the eastern United States. The reason for this is that this quarry was not a stone bowl quarry. Rather it was a quarry or extraction source for perforated soapstone slabs. This site was identified in the final stages of Lake Russell’s construction. The site was in a clear-cut area that is currently submerged beneath the lake. It was located on a ridge slope immediately south of the Georgia Highway 72 Bridge. By the time this site was discovered the archaeological fieldwork within the reservoir was completed, so no formal study of this quarry was conducted. During one informal reconnaissance visit the author observed raw material soapstone packages (cobbles generally less than 30 cm in diameter), and slab performs. Previous archaeological excavations at 9EB21, the Paris Island site, approximately 1.25 km upstream from the soapstone slab quarry site, revealed extensive evidence of soapstone slab production and use (Wood et al. 1986). Quite possibly this quarry was the parent source of the soapstone that was used to manufacture these cooking slabs. It should be noted, however, that soapstone deposits also were identified on Paris Island during that excavation project. Project funds did not allow any further study of this important discovery. Consequently, it remains unclear whether this outcrop served as a prehistoric quarry. Furthermore, archaeologists, Dean Wood, Thomas Gresham, the author, and others, conducted a systematic shoreline survey of a portion of the area near Paris Island slated for inundation and located numerous archaeological sites, including sites with soapstone artifacts. The purpose of this “salvage” research was to demonstrate the usefulness of archaeological survey in Lake Russell, once the ground cover was removed. Their shared previous experience in Georgia Power Company’s Lake Oconee had shown this survey strategy to be highly effective and desirable. The National Park Service archaeologists who were guiding the research in the reservoir project, however, were not swayed. Data from this survey was incorporated as an appendix in a later cultural resources report on a Georgia state park survey by Elliott and Blanton (1985). Figure 34 shows the present location of the perforated slab quarry/extraction site (A), an outcrop of soapstone on Paris Island (B), and 9EB21- the Paris Island habitation site (C). All three loci are now submerged beneath the waters of the USCOE’s Lake Richard B. Russell.

Historic localized use of soapstone in the areas surrounding Beaverdam Creek at its Savannah River confluence were noted by the author. Two early house sites, one located on Paris Island, near 9EB21, and the other on a high ridge southwest of Paris Island, both had chimneys constructed from crude, unmodified soapstone slabs, small boulders and cobbles. No formal study was undertaken at the Paris Island example but archaeological tests were done at the home site containing the other soapstone chimney. That site was a small dwelling that dated to the nineteenth century (Elliott and Blanton 1985). Both of these house sites possibly were part of the Calhoun plantation.
Fannin County

Fannin County is located in the Blue Ridge district of northern Georgia. No aboriginal soapstone quarries have been recorded in Fannin County, Georgia, although soapstone deposits in the county were quarried historically. Governor Alfred H. Colquitt noted in 1880 that, “soapstone is being shipped from Murray and Fannin counties” (Colquitt 1880). Historic mining of soapstone in Fannin County is indicated by an early newspaper article, which described the mineral resources on the 2,000 acres of land in Fannin County owned by Colonel C.D. Phillips. The article stated, “Col. C.D. Phillips, of this place, will be a rich man if he can interest capitalists in his mines of kaolin, soapstone and iron” (Marietta Journal 1902:1). Stevens and Wright (1901:143) noted, “The soapstone mines of Fannin county, which have been worked for some years, are located at Mineral Bluff, only a short distance south of the Georgia-North Carolina State line. This deposit is probably the southern extension of the North Carolina deposit which is extensively worked just north of the State line. The Fannin county soapstone is compact and of a dark gray or blue color. It occurs in veins varying from a few inches to a yard or more in thickness”. McCallie (1910:40-41) noted that “a considerable amount of prospecting and mining has been done on the Dickey property, one half miles south of Mineral Bluff, Fannin County”. A 1902 newspaper reported noted, “The Dickey brothers are opening up extensive talc and soapstone quarries, shipping the product to Philadelphia, where it finds a ready sale. This industry employs a number of hands” (Atlanta Constitution 1902:6). Modern topographic maps of the Mineral Bluff vicinity reveal Dickey Mountain as a prominent landform west of town and one quarry is shown near its base. No soapstone-related archaeological sites are recorded within several kilometers of this locality. The Dickey Mountain- Mineral Bluff vicinity of Fannin County would be likely starting point for an archaeological search.

Gilmer County

Soapstone quarry locations have been reported in northeastern Gilmer County. These include site 9GI163, Bear Den Mountain Quarry and a suspected quarry on Bushy Head Mountain.
Mr. W. C. Padget, a sawmill operator, reported the discovery of relics at a mining site, which is located at the Gilmer-Fannin county line. Workmen discovered, “cooking utensils, mortars [sic, mortars] and other relics, hewn from the solid soapstone. The other implements included tools that were thought to be used for mining, “‘This property lies on both sides of the Blue Ridge and on the head waters of Boarstown creek, on the south, and on the Fightingtown slope on the north, embracing Bushyhead and other Mountains’” (Atlanta Constitution 1894:2). This locational description is too vague for a specific quarry location, although it greatly narrows the search area.

George Gordon Ward (1965:9-11) noted a soapstone bowl quarry on Bear Den Mountain in the extreme northern part of Boardtown GMD 907 in Gilmer County, Georgia. Dr. S.W. McCallie (State Geologist) and Ward visited the Bear Den Mountain Quarry site in 1929 who observed, “carved boulders, stone trays and rounded but unfinished heads of outcrop rock were among examples there…Since we made our pictures someone has gone in with a bulldozer and done a devastating job of destroying these relics”. Ward took a number of photographs of the outcrop. The location of Bear Den Mountain, on the Chattahoochee National Forest northwest of Burnett, Georgia, is shown (A) in Figure 35. Site 9GI163 is a quarry site on the northern slopes of Bear Den Mountain recorded by the University of Georgia in 2005. The site form is mute with any details about this site, however, and no report is associated with the described. It remains undetermined whether Site 9GI163 is the site described by Ward, or if it is another soapstone quarry or a quarry of another type of stone. The exact relationship with the circa 1894 Bushy Head Mountain quarry discovery remains unclear. Clearly, this portion of the state has significant potential for soapstone research.

![Figure 35. Bear Den Mountain, Gilmer County, Georgia (Mapper.acme.com 2010).](image)

Greene County

Hopkins (1914:295-296) reported soapstone deposits in Greene County, Georgia. Hopkins (1914:294) describes outcrops of soapstone one mile east of Union Point and three miles northeast
of Union Point on the Daniel Springs road. He also mentioned other outcrops of chloritic soapstone on the properties of Mrs. Lee Thornton, H.T. Overton, Miss Bessie Asbury, and J.T. Hester.

Several soapstone outcrops were recorded during the archaeological survey of Lake Oconee (Wallace Reservoir) in the late 1970s. Elliott (1980a) used data gathered from the soapstone outcrops, quarries, and artifacts from the Lake Oconee area for his M.A. thesis. Archaeologists have identified two aboriginal soapstone quarries and two possibly quarried soapstone outcrops in Greene County (Elliott 1980:Figure 16; Elliott 1981a). The quarries include the Richland Creek Quarry, Site 9GE263 and the Union Point Quarry, Site 9GE1226. The two soapstone outcrops (unconfirmed quarries) are located in the northern part of Lake Oconee, above the confluence of the Apalachee and Oconee rivers.

Site 9GE263, Richland Creek Quarry

The only confirmed soapstone bowl quarry in Greene County is Site 9GE263, the Richland Creek Quarry. It was discovered by the UGA archaeology survey team in 1978 after portions of the site had been denuded by heavy equipment in preparation for the reservoir filling. The site description on the site form was brief but it noted that the site contained, “lithics and steatite and appears to be a steatite quarry” (Fish 1978). Although the quarry site was only investigated at the survey level during the Wallace Reservoir construction project, considerable data was retrieved from the site to indicate a substantial Archaic bowl manufacturing operation. Large soapstone bowl performs were located on the surface, following bulldozing of approximately 50 percent of the quarry site. The remaining 50 percent of the site remained intact in hardwood forest and it included many large soapstone boulders, several of which displayed aboriginal quarry marks. The author visited the site during the survey investigation and had responsibility for analyzing the recovered artifacts in the laboratory. Elliott submitted soapstone samples from this site, as well as other soapstone deposits in the Lake Oconee basin, to the University of Georgia, Center for Applied Isotope Studies laboratory for possible sourcing studies, but this study was never completed and the whereabouts of the rock samples are presently unknown. Additional soapstone samples are contained in the Lake Oconee artifact and lithic resource samples at the University of Georgia, Laboratory of Archaeology. In the early 2000s the landowner entertained ideas of developing the property containing Site 9GE263. The firm of Southeastern Archaeological Services was contracted to evaluate the site, as part of their ongoing involvement in surveying lands for Reynolds Plantation. The landowner then contracted with the firm of Brockington and Associates for a “second opinion” on the site’s NRHP eligibility. The present condition of Site 9GE263 is shown on the 2008 aerial photograph (A) in Figure 36.
Site 9GE1226, Daniels Spring Quarry

Site 9GE1226, or the Daniels Spring Quarry, was recorded by the author during the Wallace Reservoir Upland survey. This soapstone outcrop was identified by Hopkins (1914:294) and Elliott’s reconnaissance visit to the Daniels Springs area in 1980 confirmed that it as a soapstone bowl quarry. Hopkins described this outcrop as 50 acres in extent and containing a small amount of soapstone. Elliott noted,

This is a soapstone quarry site of undetermined extent. Exact location of quarry unknown at present. Quarried bowl fragments present. Several varieties or grades of soapstone present from soft soapy pink type to hard chloritic green type. Boulders (approximately 8 or 10) of chloritic rock visible on road—Bulldozed. No soapstone boulders observed. Area vegetated in pines. Rock wall and driveway fill in old woman’s [Mamie West] yard contained abundant soapstone. Several artifacts observed at her house site including 1 bowl under gutter. She said that she used to have a large trough-type bowl which was stolen. Location identified, site described in more detail—Mapped (Elliott 1981a).

Gwinnett County

Hopkins (1914:279-280) reported a soapstone deposit in a small ravine on the south side of Suwanee Creek, about 250 yards east of H.H. Matthews’ house. Hopkins (1914:280) reported another small soapstone outcrop in the railroad cut, 150 yards south of the depot in Norcross, Georgia. He noted it was of no commercial significance.

Only one soapstone bowl quarry has been recorded in Gwinnett County, although its site nomenclature is problematic. Site 9DA411, the Graves Soapstone Site, is a soapstone bowl quarry that straddles the DeKalb and Gwinnett County line. The site was given a DeKalb County designation because maps show it within DeKalb County. D’Angelo noted, however, that the maps are incorrect and the site is actually located in Gwinnett County (D’Angelo 2002a-b). D’Angelo reported “five soapstone bowl scars” and “chips recovered in shovel tests to 40 cm”. He noted that one soapstone bowl is in possession of the former property owners and one bowl, possibly from
this site, is in the Gwinnett County museum in Lawrenceville, Georgia. This quarry site is not within the Soapstone Ridge geological locality.

Habersham County

Habersham County is located in the piedmont and Blue Ridge provinces of Georgia. The county contains numerous soapstone outcrops that were documented by geologists. No aboriginal quarry sites have been identified in the county. Steatite was reported from Habersham County in 1882 (Richmond and Danville Railroad Company 1882:41). The parent source of this mineral specimen is undocumented. Hopkins (1914:269) reported notable soapstone deposits on the Wykle and Martin properties in Habersham County. Elsewhere in his report, Hopkins noted that the Wykle property was near Soque, Georgia (Hopkins 1914:Plate IX). Hopkins (1914:163-164) reported soapstone deposits on the former Wykle property (then owned by D.L. Pitner, F.G. Jones, N.F. Haygood, and Robert C. Canady) on the western slopes of Wolfpit Mountain on Land Lot 61, 6th District, approximately 1.5 miles northwest of Soque in northern Habersham County. This tract adjoins the previously mentioned John Martin place. Hopkins described the soapstone deposits that were located, “in a northeast-southwest belt which crosses the ridge extending west from Wolfpit Mountain”, and he discusses other outcrops on this property.

Hopkins (1914:269) also noted soapstone deposits in Habersham County, which had been quarried for tombstones. These were observed on the Robert McMillan property, four miles northwest of Cornelia and another outcrop near the C.W. Stambaugh residence at the north end of the lake in the town of Demorest, Georgia. The approximate location of this outcrop near Cornelia is shown (A) in Figure 37. Hopkins states that the soapstone rock on the McMillan property was, “used locally for tombstones until marble became so cheap that it destroyed the market for the soapstone.” Demorest Lake, which is shown on USGS topographic maps, has been drained. It was located on the northeast side of town on the waters of Camp Creek and south of Hazel Creek. Hopkins (1914:157) reported a small deposit of soapstone on the property of J.J. Holcomb, three miles east of Nacoochee and 1.5 miles south of Aerial. He noted that the deposits were located “south and southwest of Holcomb’s house and near the Chattahoochee River”. He described the thin soapstone body as, of a very poor quality”. Hopkins (1914:159) reported a soapstone deposit on the property of G.L. Lyons, five miles north of Sautee and one-half mile north of A.E. Berrong’s property and one-half mile south of the south end of the John Martin property. Hopkins noted that the soapstone deposit, while moderately abundant, had little commercial potential. He also noted that prospecting for corundum was done “many years ago”. Hopkins (1914:161-162) reported soapstone deposits in corundum prospecting cuts on the south slope of Mack Mountain in Habersham County. He also noted soapstone deposits immediately north of this location on the crest of the ridge that leads east to Mack Mountain. Hopkins (1914:162) reported a schistose soapstone in “small intrusions” on the eastern slope of Wolfpit Mountain. He also mentions “several small intrusions of soapstone” across a small ravine north of Wolfpit Mountain. He also noted soapstone at a “wildcat still” pit, north of the Wolfpit Mountain locality. Hopkins conclude in his discussion of the Mack and Wolfpit mountains that the property contained, “a very large amount of both asbestos and soapstone”, and that the soapstone “could be used for foundry facings, etc.”. Hopkins (1914:165) reported several other soapstone outcrops in Habersham County, including, the W.V. Morrison property, one mile east of Soque and 10 miles northwest of Clarkesville; on the property of Ellis Lovell, two miles northeast of Soque; and an outcrop north
of the public road a short distance north of the F.M. Wood’s property, Land Lot 30, 11th District, 2.5 miles northeast of Soque, Georgia.

Figure 37. Approximate Location of Soapstone Deposit, 4 Miles Northwest of Cornelia, Georgia (Hopkins 1914:269; GNIS 2010).

Hall County

Hopkins (1914:171) reported one soapstone outcrop in Hall County on Soapstone Hill, one mile west of Gainesville. King noted that this area had been prospected for corundum prior to 1894 (King 1894:98-100). Today the area once known as Soapstone Hill (shown as A on Figure 38) is mostly urbanized and likely has very limited potential for soapstone research. No aboriginal soapstone quarries are recorded for Hall County.
Hancock County

Hancock County is located in the piedmont province of central Georgia. No aboriginal soapstone quarries are known for Hancock County. Hopkins (1914:188-189) reported a small deposit of foliated talc and some soapstone, “but neither in large quantities” on the property of Moses W. Harris, eight miles northwest of Sparta. The author and USDA Forest Archaeologist Jack Wynn made a brief field reconnaissance of this general vicinity of Hancock County in the early 1980s to search for any obvious soapstone deposits. One small outcrop was located north of the junction of Georgia Highways 16 and 77, as shown (A) in Figure 39. This deposit had small soapstone boulders and float material but no obvious quarrying evidence was discerned by surface inspection. The rocks in this deposit appeared very hard and quite low in talc content and not well suited for aboriginal use. No artifacts were observed at this location, so no site form was completed. Further study of this general vicinity is warranted.
Harris County

Harris County is located in the piedmont province of western Georgia. Hopkins (1914:290) reported a small soapstone deposit, exposed in the public road and in a nearby railroad cut, 2.5 miles south of Hamilton in Harris County. It is described as a small dike of soapstone (Maynard et al. 1923:52). This approximate location is shown (A) in Figure 40. Hopkins (1914:290) reported several small soapstone deposits on the property of Mrs. Lizzie Spence on Lot 157, 20th District, Harris County, seven miles west of Hamilton on the north side of Mountain Creek. A very approximate location for this outcrop is shown (A) in Figure 41. With a minor amount of additional historical research, the location of the Spence property and Lot 157, 20th District and its relationship to the modern landscape may be determined.
Figure 40. Approximate Location of Soapstone Outcrop, Harris County, Georgia (Hopkins 1914:290; GNIS 2010).

Figure 41. Approximate Location of Soapstone Deposit, Mountain Creek, Harris County, Georgia (Hopkins 1914:290; GNIS 2010).
Hopkins (1914:290) reported several small soapstone deposits on the property of John Thrailkill, 1.5 miles southeast of Chipley in Harris County. The town of Chipley was renamed Pine Mountain. The approximate location of this soapstone deposit is shown (A) in Figure 42. Hopkins (1914:290) noted that similar soapstone deposits were located on the property of R.F. Myham, one mile east of Chipley (Pine Mountain). Hopkins (1914:290) reported other soapstone deposits on the property of L.H. Zachary, 5.5 miles southeast of Chipley (Pine Mountain) and on the property of Hall Bryant, six miles southwest of Chipley (Pine Mountain). No aboriginal soapstone quarries are reported for Harris County, Georgia. The geological data would indicate several potential areas exist in the county for a targeted archaeological survey.

Heard County

Heard County is located in the piedmont district of western Georgia. Hopkins (1914:289) reported a soapstone deposit on the property of W.A. Hyatt on Lot 44, 13th District, Heard County, 3.5 miles northwest of Centralhatchee. The outcrops are located in the bluff on the north side of Deer Creek, near the confluence with Centralhatchee Creek. Hopkins’ directions appear to be in error, however, since Deer Creek and its confluence with Centralhatchee Creek are actually southwest of Centralhatchee. The approximate location of the suspected soapstone outcrop is shown (A) in Figure 43. This area appears to be in hardwoods, so it may be a good candidate for future study.

Figure 42. Approximate Location of Soapstone Outcrop, South of Pine Mountain, Georgia (Hopkins 1914:290; GNIS 2010).
Jackson County

Jackson County is located in the piedmont province of north-central Georgia. Hopkins (1914:173) reported minor deposits of soapstone: on the M.L. Carter property (formerly the Jesse Strickland place) 1.5 miles northeast of Nicholson; the L.G. Hardman property, 1.25 miles north of Center (on the Southern Railway cut); on the Estes place (then owned by Dr. L.G. Hardman) 2.5 miles north of Center and 1.5 miles west of the Southern Railway; and Statham in Jackson County. Hopkins (1914:173, 269) described more substantial deposits of soapstone in Jackson County. One small outcrop was located near the junction of the Oconee River and Cabin Creek on the property of Dr. L.G. Hardman. Hopkins noted that the surface, “for the extent of an acre or more, is strewn with soapstone fragments”. Hopkins (1914:173) described another soapstone outcrop on the Hardman property, 3.5 miles southwest of Nicholson near the junction of Oconee River and Curry creek. He noted, “At this locality several large soapstone boulders are seen on the edge of the river marsh. The exposures are poor, and it can not be determined whether they are in place or not”, and he added, “A basin-shaped hole in one of these rocks suggests its use by Indians as a place for grinding corn”. The approximate location of this outcrop is shown (A) in Figure 44. Geologist S.W. McCallie (1910) gave a similar description for this soapstone outcrop. Site 9JK22 was recorded in this vicinity by Midgette (1968b:19).
Hopkins (1914:175-176) noted a deposit of soapstone on Land Lot 253, Newton District, Jackson County on property controlled by J.P. Johnson of Center, Georgia. He described an area, “of from 15 to 20 acres strewn with fragments of soapstone”, but he observed, “there are no natural exposures” of soapstone. While no soapstone quarries are official recorded in the state files for Jackson County, Hopkins’ data, as well as Robert Wauchope’s notes (1966) concerning a Jackson County collector with numerous soapstone sherds in his collection attest that quarries may exist.

Jasper County

Hopkins (1914:293) reported soapstone deposits on the property of John McElhenny, seven miles southwest of Monticello in Jasper County, Georgia. He noted that the outcrop was used locally for fireplaces and chimneys, etc., but it was, “too hard to saw, and consequently of little commercial value”. Elsewhere Hopkins describes this outcrop as seven miles south of Monticello (Hopkins 1914:37-38). McElhenney’s Crossroads is a place name that is located approximately seven miles southwest of Monticello and it would serve as a good starting point in a search for this Jasper County soapstone deposit. Its location is shown (A) in Figure 45. A review of recorded archaeological sites within a one mile radius of McElhenney’s Crossroads revealed no soapstone quarries. It should be noted, however, that this subset of sites included about a dozen sites that were described as historic rock piles and were deemed ineligible for inclusion in the NRHP. Previous work on Soapstone Ridge in DeKalb County by the author has shown that rock piles that are located near soapstone outcrops, while they may have been created in historic times, often contain soapstone vessel performs or other worked soapstone chunks. Thus, the Archaic period research potential for rock piles in these areas should not be discounted.
Jones County

No soapstone deposits were derived from an examination of geological literature for Jones County, Georgia. No aboriginal soapstone quarries have been identified in Jones County. Archaeological survey by Garrow & Associates located a soapstone outcrop in Jones County, but O’Steen observed no evidence of quarrying (O’Steen et al. 1987:6).

Lincoln County

Lincoln County, which is located in the piedmont province of eastern Georgia, has no documented soapstone outcrops or quarries. Soap Creek, which is situated northeast of Lincolnton in eastern Lincoln County, Georgia (GNIS 2013).

Many archaeological sites are recorded within Lincoln County that have yielded aboriginal soapstone artifacts. Probably the best example, Site 9LC1 or Prices Island, now completely flooded beneath the USACE Lake Strom Thurmond (formerly Lake Clark Hill). Price’s Island was described in 1878 as, “3 miles long and 1 mile wide in the widest place” by USACE, Assistant Engineer J.P. Carson, who navigated past that portion of the Savannah River (Carson 1879:750-751). Carson described Long Shoal was located at the head of Price’s Island. The shoals extended for five miles and had a fall of 35 feet. Below Price’s Island, approximately 200 yards, was Garden Shoal. Those shoals extended for 400 yards with a gradual fall of three feet. Kilcrease’s [Gilchrist’s] Ferry crossed the river at the lower end of Price’s Island. This crossing led to a road, known as the “Charleston Big Road” connecting this part of Georgia with Charleston, South Carolina. In 1947, USACE land surveyors described and mapped the island as covering 328 acres, more or less, based on aerial survey data.

Relic collectors in the 19th and early 20th century found soapstone artifacts in the archaeological deposits of Price’s Island. Charles C. Jones, Jr. described and illustrated a complete specimen of
perforated soapstone slab from the “relic-bed on Price’s Island”. Jones stated, “It is eight inches and a half in length, six inches and a half broad at the widest part, and about three-quarters of an inch in thickness. The perforation is three-quarters of an inch in diameter” (Jones 1873:338, Plate XIX, No. 6).

Roland Steiner also collected many soapstone artifacts and other Late Archaic artifacts from sites on Price’s Island. His letters and other records provide no details of his investigations on the island and it is unknown whether he opened any excavations.

Archaeologist Robert Wauchope (1966) briefly described the primary archaeological site on Price’s Island based on his 1939 visit to the site. Wauchope recorded a mound and village on the island, based on information provided by Washington, Georgia resident, Clement E. Saxton, who had collected artifacts from the site around 1917. Wauchope also excavated a test cut, Wauchope reported that the site had produced projectile points (slate and black flint) and freshwater mussel shells. Archaeologist Carl Miller conducted limited study of archaeological sites on Price’s Island in the late 1940s prior to the Clark Hill reservoir completion. Interestingly, neither Saxton’s, Wauchope’s, Miller’s collections from the island include any soapstone artifacts.

Elliott (1993) examined Steiner’s and Miller’s collections from Prices Island. Miller’s collections, which are curated by the Smithsonian Institution. Steiner’s collections from the site are curated at the Smithsonian Institution, the AMNH, the Field Museum, and elsewhere. Because of the lack of detailed archaeological study of the Archaic sites on Price’s Island, our understanding of soapstone use there remains very sketchy.

Lumpkin County

Hopkins (1914:274-275) reported several soapstone outcrops on the east side of the Chestatee River, four air line miles east of Dahlonega (Figure 46 and 47). He noted, “several small openings where the rocks have been quarried for local use”, including one area on Lot 121, 15th District, 1st Section. Hopkins noted that soapstone from this locality was used for fireplaces, including the Mountain Club House in Dahlonega and tombstones at the Yellow Creek Church cemetery, near Murrayville. Hopkins (1914:275) reported soapstone at an area known as Soapstone Ridge in Lumpkin County, nine miles northeast of Dahlonega and seven miles west of Cleveland. He noted that the outcrop has been used locally and small quarries opened on the properties of W.M. Grindel, A.C. Bowen and others. This location roughly corresponds to the present day Soapstone Road in extreme eastern Lumpkin County. No archaeological sites are recorded within several kilometers of this location (GNAHRGIS 2013). Hopkins (1914:276) reported soapstone outcrops one mile southeast of Porter Springs in Lumpkin County. This approximate location is shown (A) in Figure 48. Hopkins (1914:276) reported another small soapstone outcrop on the property of C.M. Motes, 3.5 miles northwest of Porter Springs in Lumpkin County. The approximate location of this deposit is shown (A) on the Chattahoochee National Forest in Figure 49. Hopkins (1914:275) reported three other soapstone outcrops in Lumpkin County: on the J.R. Dowdey property, five miles northeast of Dahlonega; on the William Gooch property, one mile west of the previously described Motes outcrop; and on the Earl Davis place, 3.5 miles west of Dahlonega. Galpin (1915:158) provides a sketch map that indicates a soapstone outcrop west of Porter Springs. A portion of Galpin’s map is reproduced in Figure 50. Figure 51 shows the approximate location of the soapstone outcrop on a modern aerial photograph.
Figure 46. Soapstone Outcrop near Dahlonega, Lumpkin County (Hopkins 1914: Plate XIXa).

Figure 47. Small Prospect Opening on Soapstone Ridge, North of Dahlonega, Lumpkin County (Hopkins 1914: Plate XIXb).
Figure 48. Approximate Location of Soapstone Deposit, Lumpkin County, Georgia (Hopkins 1914:276; GNIS 2010).

Figure 49. Approximately Location of Soapstone Deposit, Lumpkin County, Georgia (Hopkins 1914:276; GNIS 2010).
An Archaic period soapstone bowl quarry has been reported in Lumpkin County by Forest Service archaeologist Jack Wynn (personal communication 1986).

The Wahoo Baptist Church Cemetery in Murrayville, Lumpkin County contains examples of 19th century soapstone grave markers. Examples photographed in the 1970s are shown in Figure 52. These “slot-and-tab” style tombs, mostly dating from the period 1848-1889, have recently received renewed attention from historic preservationists, including Tom Kunesh and others (Vanishing Georgia 2013; Morales 2010; Kunesh 2011). The Wahoo Baptist Church was established in 1819.
McDuffie County

No soapstone quarries or soapstone outcrops have been described for McDuffie County. Its location in the Georgia piedmont region makes it a prime location for their existence.

Meriwether County

Meriwether County is located in the piedmont province of western Georgia. Hopkins (1914:291-292; Maynard et al. 1923:74) reported a small soapstone outcrop on the property of Sim Woodruff, one-half mile northwest of St. Marks, five miles west of Primrose, and six miles east of Hogansville in Meriwether County, Georgia. Its approximate location is shown in Figure 53. He noted that the deposit had been prospected but that, “there is little possibility of commercial soapstone”. Maynard and others noted that the deposit is 10 feet wide and outcrops at several points one hundred yards apart. Bowles (1937:29) reported an outcrop of talcose rock north of Luthersville in Meriwether County. No aboriginal soapstone quarries are reported for Meriwether County.
Figure 53. Approximate Location Soapstone Outcrop, Meriwether County, Georgia (Hopkins 1914:291-292; GNIS 2010).

Monroe County

Monroe County is located in the piedmont province of central Georgia. Hopkins (1914:292-293) reported a soapstone deposit on the property of Mrs. M.J. Kimbell (Lot 154, 5th District, Monroe County), nine miles east of Forsyth, Georgia. He described the soapstone as, “hard and impure, and of no value except for local use”. This very approximate location is shown (A) in Figure 54. As this photograph shows, some of the outcrops may be submerged by a Georgia Power Company reservoir. No aboriginal soapstone quarries are recorded for Monroe County. The outcrop described by Hopkins would serve as an excellent starting point in southeastern Monroe County for a targeted archaeological search.
Morgan County

Hopkins (1914:177; Maynard et al. 1923:77) reported “some soapstone fragments” on the property of G.W. Murelle [or Morelle], four miles east of Newborn and 1.5 miles east of Broughton in western Morgan County. No corresponding archaeological sites have been identified at this location.

A small soapstone bowl quarry site (9MG194) is recorded for Morgan County, northeast of Swords, Georgia (Paulk 1981). The soapstone outcrop at this site had been badly disturbed by boat ramp construction when it was examined by the Wallace Reservoir survey team. None of these sites were recorded as archaeological sites by the survey team. One soapstone bowl sherd was collected. This site is located just upslope from Lake Oconee on the Chattahoochee-Oconee National Forest.

Another soapstone deposit that was likely an aboriginal quarry was explored at Site 9MG73, or Swords Bridge site, by the author, as part of the 1977 UGA Field School (DePratter et al. 1976; Elliott 1980; Moss 2011). The boulder outcrop, which was located just south of Swords Bridge Road, had been severely damaged by previous bulldozing, however, and no obvious quarry evidence was detected. Elliott’s conversations with the late E.H. Armour, a local relic collector, indicated that soil from this site had been removed as borrow dirt, which had destroyed the quarry evidence. Mr. Armour had in his collection many stone axes and celts that he had collected in the field adjacent immediately north of the outcrop. Later in the Lake Oconee construction the author revisited 9MG73 after massive quantities of soil had been removed. Several large boulders of poor quality soapstone and other ultramafic rock were visible in the exposure. Those boulders were
almost certainly not available to aboriginal inhabitants, as they were deeply buried in the saprolitic subsoil.

Elliott (1980) reported several other soapstone outcrops in Morgan County that were identified by the Wallace Reservoir Mitigation survey for Lake Oconee. Their locations were not recorded as archaeological sites but are plotted in a map set that can be found in Elliott (1980:Appendix A).

Murray County

Murray County is located in the northwest Georgia mountains. Hopkins (1914:240-264) reported on major talc mining operations at the base of Fort Mountain in Chatsworth, Murray County, Georgia. A mine was operated by the Cohutta Talc Company beginning in the 1880s (Vanishing Georgia 2013). The Cohutta Talc and Manufacturing Company operated its mine near Spring Place in Murray County, where it reported “soapstone and fibrous talc of the finest quality” (Atlanta Constitution 1897:20). Stevens and Wright (1901:143) compared the soapstone mined in Murray County on “Fort mountain, a few miles east of Spring Place”, to the Fannin County soapstone mined near Mineral Bluff, which they considered an extension of the soapstone formation more extensively mined in North Carolina. The Georgia Talc Company and the Fort Mountain Talc Company, Southern Talc Company, and the Piedmont Talc Company also mined deposits in the vicinity in the 20th century (McCallie 1910:40-41). The author visited one mine while it was still in operation in the early 1970s. The talc mined here from beneath Fort and Cohutta mountains was among the purist deposits in the world. Mining operations ceased there in the late 20th century. Figure 55 shows the approximate location of the talc mines in Murray County. Despite the extensive documentation relating to historic mining of talc and related minerals in the Chatworth vicinity of Murray County, the author was unable to locate references to any aboriginal soapstone quarries in Murray County. Given the extent of the high quality talc deposits on the lower slopes of Fort Mountain, however, it seems almost certain that quarries existed in the county. Some of these archaeological sites may remain intact and await further study. The woodlands of Fort Mountain would be a great place to start any such investigation. Fort Mountain is named for a prehistoric rock wall that extends for some 928 feet along a zig-zag route on the upper slopes of the mountain. This property was donated by Ivan Allen and now operated by the State of Georgia as the Fort Mountain State Park (Furcron et al. 1947; Smith 1962).
Oglethorpe County

Oglethorpe County is located entirely in the piedmont province of eastern Georgia. No soapstone deposits, mines or quarries are reported for Oglethorpe County. Archaeological surveys in Oglethorpe County yielded minor amounts aboriginal soapstone artifacts. These include perforated soapstone slab, grooved soapstone Freer (1989:86) cites the existence of a soapstone outcrop on the Broad River in Oglethorpe County but no aboriginal soapstone quarries are known for the county.

Paulding County

Hopkins (1914:281) reported a soapstone deposit on Land Lots 1,171 and 1,172, 3rd District, 3rd Section on property of S.M. Harris, 3.5 miles northeast of Dallas, Georgia. The approximate location of this outcrop is shown (A) in Figure 56. It should be noted that a large body of resistant rock, Elsberry Mountain, is located south of this location and it may also be a likely candidate for a soapstone deposit and should be targeted for future study. Other early geological reference to soapstone in Paulding County is mentioned by Campbell and Ruffner (1883:45-46) but no specific outcrops are cited. Hopkins (1914:180-181) reported soapstone on the properties of Dr. R.J. Dean and W.H. Hunt, on Land Lots 763 and 750, 2nd District, 3rd Section, one mile west of Hiram in Paulding County, Georgia.
Site 9PA65 is an Archaic and historic period soapstone quarry on a ridge south of Pumpkinvine Creek. A private collection owned by Jesse Bookhardt was examined by Coosawattee Foundation archaeologist Jim Langford and it included: “broken steatite bowls (partially completed); pieces of drilled steatite; various quarrying tools” (Langford 1997). Features reported at the quarry site include “one vertical pit and two horizontal shafts”, and a surface scatter of bowl preform fragments and granite quarrying tools. Site 9PA102 was a soapstone quarry, which is mapped down slope from Site 9PA65 (Cantley 1998; Cantley and Raymer 1998; Jesse Bookhardt and Jared Bookhardt personal communication, May 8, 2008). The two sites are one in the same.

The prehistoric soapstone bowl quarry and historic soapstone mine prospect at 9PA102 near Pumpkinvine Creek was subjected to Phase I and II study by New South Associates and determined ineligible for inclusion in the NRHP (Cantley 1998; Cantley and Raymer 1998). Its location is shown in Figure 57.
Cantley described the site in his Phase I study: “Site 9PA102 contains potentially significant prehistoric and historic components. The prehistoric component is identified primarily on the basis of a collection of stone tools and soapstone artifacts collected by an amateur archaeologist during the early 1980s when the area was cleared of vegetation. The present survey relocated a soapstone outcrop of boulders and scattered fragments of what appeared to be worked soapstone artifacts. The historic component at site 9PA102 is represented by three small mine shafts that were apparently excavated by the local inhabitants during the late 1800s or early 1900s” (Cantley 1998:i).

Cantley and Raymer (1998:i) revisited 9PA102 and two other sites in a Phase II testing project and made these conclusions:

Site 9PA102, on the other hand, contained potentially significant remains of a Late Archaic soapstone quarry and a 20th century talc mining operation. The prehistoric component was identified primarily on the basis of stone tools and soapstone artifacts collected by an amateur archaeologist during the early 1980s. With the aid of this amateur archaeologist, the survey relocated the soapstone boulders and scattered fragments reported to be the vicinity where the prehistoric artifacts were found. The historic mining component was represented by three small mine shafts. The Phase II testing project documented that these sites were wholly contained within the modern humus and plowzone deposits and that no stratigraphic integrity remained…Poor artifact preservation was also present at site 9PA102. Shovel tests in the reported area of the soapstone outcrop failed to yield a single prehistoric
artifact. Two quartz flakes and a possible bowl scar carved into one of the soapstone boulders was observed in the area after all the vegetation was removed from the outcrop itself. A shovel test placed in the center of the outcrop confirmed that much of the rock debris in this vicinity was placed there by the historic mining operation. Based on this evidence, the prehistoric component at site 9PA102 does not appear to be significant under Criterion D and is not recommended as eligible for listing on the National Register of Historic Places. The physical evidence of historic period mining at site 9PA102 consisted of two horizontal shafts dug into the side of a sloping ridge and a vertical shaft or pit on the ridge top. Near the mines were large soapstone boulders and piles of cobbles and broken fragments which were left over from the mining activities. This evidence corresponds with the known practices of "ground hogging" or "gophering," which were common mining methods in the early twentieth century. The rather shallow depth of the shafts, the absence of timbering or tracking and other more permanent features suggest that mining activities at 9PA102 were small in scale and of a temporary nature. Based on the estimated value of talc on the Graves property, the physical evidence at the site and the lack of documentation pertaining to any mining activities, it can be concluded that the historic component at site 9PA102 is unlikely to yield important information about the talc mining industry or its associations with the history of Paulding County. Given this, Site 9PA102 does not appear to be significant under Criterion D.

Pickens County

Talc occurs in the Alicetown/Salem Church vicinity of Pickens County, Georgia. An exposure of the talc deposits was photographed in 1912 (Vanishing Georgia 2013). A modern map shows a “Talc Mine Road”, south of Salem Church and east of Sharp Mountain in rural Pickens County. No records were located pertaining to any prehistoric use of this outcrop.

Putnam County

Elliott (1980:84, Map 7) identified one soapstone bowl quarry, Site 9PM338, in Putnam County. This resource was identified in the Lake Oconee basin after approximately 50 percent of the site was disturbed by bulldozers in 1978. Four soapstone bowl sherds were collected. The site is now submerged by the lake and only survey level investigations were done. Several other soapstone deposits were identified, mapped and rock samples collected in the Wallace Reservoir survey, but these were not considered archaeological sites so no site forms were completed for them. Their locations are plotted on a map set of the study area, which can be found in Elliott (1980: Appendix A).

Rabun County

Rabun County is located in the Blue Ridge physiographic province of northeastern Georgia. Hopkins (1914:143-144) mentioned some soapstone deposits in the vicinity of the Laurel Creek mine in Rabun County, Georgia. That mine, which was active in the 1870s and 1880s, was located in the southern portion of Lot 72, 3rd District, one mile northeast of Pine Mountain and on the northern bank of Laurel Creek. Hopkins noted, “Near the eastern contact there is developed some
soapstone, but in rather small quantities”, and he added, “This locality does not offer a favorable prospect for commercial asbestos or soapstone”. No aboriginal soapstone quarries are recorded for Rabun County. The above-described soapstone resources may be a good place to begin a search. The location of the Laurel Creek Mine is shown (A) in Figure 58.

Figure 58. Laurel Creek Mine, Rabun County, Georgia (Hopkins 1914:143-144; GNIS 2010).

Hopkins (1914:145-146) reported a small outcrop of soapstone on the Andrew Gennett property, four miles east of Clayton on the Clayton-Pine Mountain Road. He noted that some prospecting had been done there a few feet from the north side of the road. This approximate location of this outcrop is today along Warwoman Road, west of Antioch, Georgia, as shown (A) in Figure 59. Hopkins (1914:147) reported a prominent outcrop of talcose, asbestos rock known locally as, “Soapstone Mountain” on the property of L.D. Garland, Lot 157, 2nd District, Rabun County, four miles west of Dillards. He noted several large outcrops in the area and he noted that the stone was used locally for “building chimneys, etc.”. This same rock deposit was described by King (1894:86), who identified it as peridotite and talcose anthophyllite. Hopkins (1914:147) reported a small deposit of soapstone on the property of Mrs. Margaret Beavett, Lot 177, 2nd District, Rabun County, on the north side of Betty Creek, two miles northwest of Dillards. King (1894:84) also published information on this outcrop, which he lists as the Beavett Mine. King noted the deposit covered about an acre. Hopkins (1914:148) reported a soapstone deposit on the property of R.H. Lamb, Land Lot 188, 2nd District, Rabun County, four miles northwest of Dillards. He noted that the deposit “strikes in the direction of the main intrusion on Lamb’s Creek, which is several hundred yards east of Lamb’s house. Here asbestos and soapstone are found on two separate ridges”.
Stephens County

Stephens County is located in the piedmont and Blue Ridge mountains of northeastern Georgia. The county contains several soapstone deposits, including at least three that were mined by prehistoric people. Deposits of soapstone are documented geologically at Soapstone Mountain (GNIS 2013) and in the Martin community (Hopkins 1914). Hopkins (1914:272-273) described chloritic soapstone outcrops on the Glen Davis property, five miles southwest of Toccoa near the Southern Railway. He noted a small soapstone exposure within a hornblende gneiss outcrop (which trends northeasterly for about .25 miles), about one-fourth mile southwest of Davis’ mill. He notes that the soapstone is “too hard to be of value except locally”. Hopkins described a “conspicuous deposit of chloritic soapstone on the Meckline property, 2 miles north of Toccoa, near the Soapstone schoolhouse”. He observed, rock outcrops on a small knoll” over a .25 acre area. He noted a small amount of prospecting evidence, including areas where, “a few soapstone bricks have been sawed”, but he concluded that the magnetite inclusions in the rock made it difficult to saw. Hopkins (1914:273) described an “inferior grade of soapstone” that outcropped on the E.H. Russell property eight miles east of Toccoa, opposite from Fort Madison, South Carolina. Hopkins’ reference to Fort Madison may be in error, as Fort Madison was located several kilometers east of the Georgia-South Carolina State line. More likely he was referring to Old Madison, which USGS topographic maps depict in South Carolina above the Tugaloo River upstream from the Chauga River confluence. Several wooded ridges in the vicinity opposite from
Old Madison may harbor soapstone rock outcrops (Mapper.acme.com 2013). Hopkins (1914:273) described soapstone outcrops on the Bird Yearwood property, 3.5 miles northeast of Toccoa on a branch of Toccoa Creek. There it occurred with talc and asbestos and Hopkins noted the presence of some prospecting pits. Hopkins (1914:273-274 noted several other chloritic soapstone outcrops (of inferior grade) including the C.F. Anderson property, three miles northeast of Toccoa; the J.E. Brady property, four miles west of Toccoa; the Perry Farrow property, one mile south of Eastonollee, and the T.R. Yow property, one-eighth mile north of Martins. He provided no details of any of these outcrops.

Historic quarrying of soapstone in Stephens County took place in the nineteenth century. The *Columbus Daily Enquirer* (1888:3) reported, “H.H. Owen will erect machinery at his soapstone factory, near Toccoa, for preparing the stone for fireplaces and hearths”. *The American Engineer* (1888, Vol. 15-16:88) announced in September, 1888 that, “Machinery will be erected at Toccoa, Ga., by H. H. Owen, for preparing soapstone for use in hearths, mantels, etc.”

Archaeologist Chad Braley noted finding a nineteenth century soapstone grave marker in Stephens County during an archaeological survey for the Georgia Department of Transportation.

Three prehistoric sites are recorded in Stephens County that are likely associated with soapstone, although no quarries have been described. Site 9ST209 is a petroglyph located on the top of Browns Bottom Outcrop. The Looney Petroglyph, 9ST223, is located in downtown Martin, Georgia. Site 9ST249 on Soapstone Mountain is a rock wall (Fernandez-Sardina 1997; Morgan 1998; Bruce 2002; Paglione 2002).

Taliaferro County

Taliaferro County is located in the piedmont province of eastern Georgia. An outcrop of chloritic soapstone was briefly described by Hopkins (1914:294), who noted, “A similar deposit of chloritic soapstone is to be encountered over the Greene County line in Taliaferro County, 8 miles northwest of Crawfordville on the property of Miles Hackney.” Hopkins further noted, “here it has been quarried for local use for door-steps, fire-places, etc.” No aboriginal soapstone quarries have been located in Taliaferro County. The former Miles Hackney property that Hopkins described would be a great place to begin an archaeological search.

Towns County

Towns County is located in the Blue Ridge mountains of northern Georgia. Hopkins (1914:150) reported a soapstone deposit at the Bell Creek corundum mine on the estate of William R. McConnell, on Land Lot 6, 18th District, Towns County, four miles northeast of Hiawassee. Hopkins also reported a small soapstone deposit on the J.N. Gibson estate, on Land Lot 42, 18th District, Towns County. He noted that the area displayed evidence of prospecting for corundum and he observed soapstone in a prospect ditch on the western slope of the hill. Hopkins (1914:158) reported a “number of small dikes” containing “an impure chloritic soapstone” on the road from Hiawassee to Young Harris. He did not consider this deposit of commercial value. Other potential soapstone locations in Towns County are suggested by modern place names. Soapstone Creek is a named stream in southwestern Towns County, south of Spaniard Mountain and west of the Unicoi Turnpike (GNIS 2013; Mapper.acme.com 2013). No archaeological sites are presently recorded.
within its watershed. The community of Soapstone, or Soap Stone, is located near the intersection of Georgia Highways 180 and 17/75, which is near the aforementioned Soapstone Creek (Duncan 2010:1). This area is a promising target for future study. Its location is shown (A) in Figure 60.

![Figure 60. Soapstone Creek, Towns County, Georgia (GNIS 2010).](image)

Archaeologist Daniel Simpkins (1990) discovered a small aboriginal soapstone quarry near Brasstown Creek in Towns County as part of a survey for creation of the Brasstown Valley State Park in 1988, which he described: “Yh11 is a soapstone outcrop at the base of a ridge on the east side of the creek. This site exhibits possible pictographs and nutting or anvil holes. A 1.5-meter square test pit adjacent to the outcrop uncovered some soapstone fragments that may indicate aboriginal mining of the outcrop. The site is eligible for inclusion in the National Register.” This quarry site, which Simpkins estimated measured approximately 10 meters by 10 meters in extent, was officially recorded as Site 9TO51.

More recently archaeologists Joel Jones and Jerald Ledbetter have documented aboriginal soapstone sites in Towns County. Their team located one curious soapstone boulder contains numerous bowl removal scars and is covered with many dozen small pits. It is shown in Figure 61.
Troup County

Hopkins (1914:183-184) reported soapstone in Troup County on the property of G.I. Bryan, 4.5 miles west of Chipley (Pine Mountain). The talcose and soapstone rocks on this property were badly decomposed. Hopkins noted more than 20 prospecting pits were scattered over a cotton field, “showing either asbestos or talcose material”. Hopkins (1914:186) reported a, “small amount of soapstone” on the property of Mrs. Leila Beasley, Land Lot 243, 7th District, Troup County, four miles northwest of Mountville. Both of these soapstone resources were considered minor by Hopkins.

One soapstone quarry is known for Troup County. Site 9TP210 is a small soapstone quarry located on the shoreline of the U.S. Army Corps of Engineer’s West Point Reservoir, which was recorded by UGA archaeologists in 1979 (Hally and Rudolph 1982b). They noted the presence of three small soapstone outcrops exhibiting bowl removal scars and “much steatite debris”. Hally and Rudolph did not visit the site. Rather, they based the site record on information provided by researchers at West Georgia College. Artifacts collected by the West Georgia College archaeologists included amphibolites digging implements, soapstone vessel sherds, aboriginal lithics and chipped stone. Hally and Rudolph noted that the exact site location and site size were unclear (Hally and Rudolph 1982b:114).

Union County

Track Rock Gap, 9UN3

A petroglyph site at Track Rock Gap (9UN3) was first described by geologist Matthew F. Stephenson in 1834. Stephenson cut away and removed a portion of one boulder bearing petroglyphs. The Track Rock site later was described by Reverend George White [White’s Statistics] 1849:571; 1854) and Colonel Charles C. Jones, Jr. (1877:377). The Track Rock site was recorded by the Smithsonian Institution’s cultural anthropologist James Mooney in 1889 (Powell 1890:418, Plate XX) and briefly described by Smithsonian’s archaeologist Cyrus Thomas...
(1898:53-54), who related information provided by J.M. Spainhour concerning “Pictographs on large boulders in Track Rock Gap, 4 miles east of Blairsville”, and, “Stone cairns at same gap”. By that time significant portions of the Track Rock petroglyph boulders had already been removed. Figure 62 shows petroglyphs on the boulders that were recorded by Mooney. Geologist Hopkins (1914:269) briefly described the Track Rock corundum mine on Lot 259, 17th District, on the south side of Track Rock Gap, which contained soapstone deposits. Archaeologist Robert Wauchope recorded the site in 1939, as part of his North Georgia survey (Wauchope 1966). A protective iron grate was constructed over the remaining boulders by the U.S. Forest Service in the 1960s. These petroglyphs at Track Rock Gap are carved into large eight chloritic soapstone boulders. Recent archaeological study of 9UN3 and vicinity has greatly increased our understanding of this important rock art site (Wettstaed 2009; Loubser 2010). Loubser carefully documented all of the visible petroglyphs at the site. Track Rock Gap is located along the Choestoe Indian trail, which was an ancient trading path in the Blue Ridge Mountains (Loubser 2010:3, Figure 3). Figure 63 shows one of Loubser’s illustrations of the Track Rock boulders. Loubser noted possible evidence of soapstone bowl quarrying on Boulders 1, 2, and 8 at 9UN3 (Loubser 2010:32-34, Figures 7-8; 58, 60, Figure 26, 88-89, Figure 34). The later extensive petroglyph carving activity masks the earlier Archaic stone bowl industry evidence. The other boulders at 9UN3 display no surface evidence of stone bowl manufacture. Loubser (2010:69; Loubser and Frink 2010) provides convincing evidence from the Track Rock data and comparative data from other petroglyph sites in Georgia and North Carolina that the petroglyphs post-date the period of soapstone bowl production in northern Georgia.
Figure 62. James Mooney's Sketches of Petroglyphs at Track Rock, Union County, Georgia (Mooney 1889, in Powell 1900:418, Plate XX).
Site 9UN15, J.J. Hulsey Quarry

Site 9Un15, or the J.J. Hulsey Soapstone Quarry, is a soapstone bowl quarry, petroglyph and habitation site in rural Union County, located approximately one mile south of Track Rock Gap. The quarry site was discovered by the property owner, J.J. Hulsey, who contacted David Hally at the University of Georgia. Dr. Hally dispatched the author to investigate the site in 1978, who recorded the site (Elliott 1978). This site includes more than 50 large soapstone boulders bearing bowl quarrying “snap off” scars and depressions adjacent to quarried boulders, concentric circle petroglyphs on one soapstone boulder, soapstone bowl preform fragments, and a soapstone rock shelter above a small branch. No bowl sherds were observed on the surface during the brief inspection of the area. Mr. Hulsey had collected a wheel barrow load of soapstone bowl performs and one full-grooved greenstone axe, while constructing the driveway for his home. This relic collection was examined and photographed but only one bowl sherd from Mr. Hulsey’s discovered cache and one rock sample from the area of most intensive quarrying were curated at the University of Georgia (Accession 26312). The bowl fragments that were observed were early stage performs with rounded bottoms. Site 9UN15 was briefly revisited in 1999 by the author and Rita Folse Elliott and observed to be in nearly the same condition as in 1978. The property was still owned by the J.J. Hulsey family at that time. Mrs. Hulsey later provided several photographs of Site
9UN15, including the quarried boulder shown in Figure 64. No detailed study was conducted at the site but the site displays enormous research potential.

Figure 64. Quarried Boulder at Site 9UN15 (Courtesy of Mrs. J.J. Hulsey 2000).

An obvious place to search for other potential soapstone quarries in Union County is soapstone place names. Two of these were identified by GNIS research. Soapstone Gap is a placename shown on Union County highway map on GA 180 (GNIS 2013). Its location is shown (A) on Figure 65. Soapstone Branch is a named stream near Mulky Gap in Union County (GNIS 2013). Its location in the Chattahoochee National Forest is shown (A) in Figure 66. No archaeological sites are presently recorded in the vicinity of this stream or the gap. Both locations are promising targets for future archaeological study since they are heavily forested and not likely obliterated.

Walton County

Walton County is located in the piedmont province of north-central Georgia. Hopkins (1914:176) reported “small bodies of almost pure talc and others of chlorite” on the property of Perry Breedlove, Land Lot 160, 3rd District, Walton County, 4.5 miles east of Monroe. Hopkins (1914:176) reported other soapstone deposits in Walton County: on the property of Judge A.C. Stone, 1.25 miles northeast of Monroe, and on the property of J.A. Parker, 1.25 miles west of Compton. No aboriginal soapstone quarries are currently known for Walton County, although the two deposits described by Hopkins are good candidates for future study.
Warren County

Warren County is located at the Fall Line in eastern Georgia. Northern portions of the county are underlain by piedmont metamorphic and igneous bedrock, while the southern part of the county is covered with a thick mantle of coastal plain sediment. No soapstone quarries have been
documented in Warren County. Soapstone Branch is a named stream in Warren County (GNIS 2013). No archaeological sites are presently recorded in the vicinity of this stream. This area, shown (A) in Figure 67, particularly to the east of this point, is a promising target area for future soapstone research.

![Figure 67. Soapstone Branch, Warren County, Georgia (GNIS 2010).](image)

White County

Prehistoric soapstone quarries may exist in White County, but none have been located or described. Archaeologists documented the early historic period use of soapstone tombstones in White County, Georgia. Cemeteries in Loudsville vicinity contain tombstones made from soapstone (Historic Resources Survey 1976; Wynn 1982). A 19th century dwelling constructed with a soapstone chimney was observed by the author just south of Loudsville. Hopkins (1914:270-271) described soapstone deposits on the properties of A.M. Allison and Elisha Castleberry, approximately five miles northwest of Cleveland in White County, Georgia. Hopkins (1914:271) described soapstone on the H.H. Dean property one mile south of Helen and he noted that this outcrop was quarried for “chimneys, etc.” Other soapstone outcrops have been documented for White County, but the cultural exploitation of the stone has not been described. Hopkins noted other soapstone deposits in this section on the property of Joe Fain, Charlie Williams, and L.G. Hardman.

Soapstone tombstones are reported at a cemetery at the base of Lynch Mountain in White County. In a 1938 news article, James E. Denton reported, “There is at the foot of Lynch Mountain three lonely graves, said to be the resting place of Judge Lynch, his wife and Kate Ward. Many years after Katy Ward was buried, some white man dug into her grave and got much valuable jewelry. A man by the name of Wood stole the soapstone tombstone at Lynch’s grave and used it in his furnace. Moses Harshaw, who owned the land on which the grave was located, took out a warrant for Wood and he fled the country never to return. The tombstone was afterward returned to its rightful place as the guardian of the departed dust” (Denton 1938). A review of the modern topographic map of the Lynch Mountain vicinity reveals a cemetery in Habersham County,
northeast of Lynch Mountain. Whether this cemetery is the one cited in the 1938 article remains to be determined. No archaeological sites are recorded on, or at the base of, Lynch Mountain.

Prehistoric use of soapstone is evidenced at site 9WH114, Hickorynut Petroglyphs. This site was recorded in 1995 and studied in detail in 2010 (Paglione 1995; Loubser 2010). No soapstone bowl quarrying evidence has been observed at this outcrop.

Wilkes County

Site 9WS1, Mallorysville Soapstone Quarry. Robert Wauchope (1966) recorded a soapstone quarry near Mallorysville in rural Wilkes County, Georgia. Wauchope noted that he had visited the site along with Judge Sutton and Alexander Wright on October 21, 1939. The group picked up soapstone bowls and a perforated soapstone slab from the site’s surface. The site was described as a soapstone quarry and soapstone workshop. Wauchope’s directions to the site were: “Northwest of Mallorysville take right at fork 3 miles out. 4 miles from here turn off into field road. Cross branch of valley and quarry on next slopes”. This site is recorded in the GASF records as 9WS1 but no location is shown. In 1986 archaeologist Rita Folse Elliott and the author made a brief reconnaissance visit to the Mallorysville quarry vicinity based on the directions provided by Wauchope. This search was cursory, however, and no clear evidence of a soapstone quarry or outcrop was identified at that time. This area was rural, however, so a more thorough survey may yield positive results, if Wauchope’s information was valid. Figure 68 shows a modern aerial view of the approximate location of the Mallorysville soapstone quarry (marked by +), based on Wauchope’s directions. The suspected location of the quarry consists of planted pines, pasture, and hardwoods along the immediate stream margins.

Figure 68. Approximately Location of Mallorysville Soapstone Quarry, Site 9WS1, Based on Wauchope's Directions (Mapper.acme.com 2010).

Soapstone Availability

Soapstone is widely distributed in the fall line, piedmont, and Blue Ridge Mountain districts of Georgia. Documented soapstone deposits are known for 40 counties. These counties are listed below and the number of known aboriginal soapstone quarries in each county is indicated. Approximately 67 Archaic soapstone quarries have been located in Georgia.
<table>
<thead>
<tr>
<th>County</th>
<th>Relics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>3</td>
</tr>
<tr>
<td>Carroll</td>
<td>6</td>
</tr>
<tr>
<td>Cherokee</td>
<td>0</td>
</tr>
<tr>
<td>Columbia</td>
<td>2</td>
</tr>
<tr>
<td>Clayton</td>
<td>1</td>
</tr>
<tr>
<td>Cobb</td>
<td>1</td>
</tr>
<tr>
<td>Dawson</td>
<td>0?</td>
</tr>
<tr>
<td>DeKalb</td>
<td>36</td>
</tr>
<tr>
<td>Douglas</td>
<td>0</td>
</tr>
<tr>
<td>Elbert</td>
<td>2</td>
</tr>
<tr>
<td>Fannin</td>
<td>0</td>
</tr>
<tr>
<td>Fulton</td>
<td>3</td>
</tr>
<tr>
<td>Gilmer</td>
<td>1</td>
</tr>
<tr>
<td>Greene</td>
<td>2</td>
</tr>
<tr>
<td>Habersham</td>
<td>0</td>
</tr>
<tr>
<td>Hall</td>
<td>0</td>
</tr>
<tr>
<td>Hancock</td>
<td>0</td>
</tr>
<tr>
<td>Harris</td>
<td>0</td>
</tr>
<tr>
<td>Heard</td>
<td>0</td>
</tr>
<tr>
<td>Jackson</td>
<td>0?</td>
</tr>
<tr>
<td>Lincoln</td>
<td>1?</td>
</tr>
<tr>
<td>Lumpkin</td>
<td>1?</td>
</tr>
<tr>
<td>Meriwether</td>
<td>0</td>
</tr>
<tr>
<td>Morgan</td>
<td>2</td>
</tr>
<tr>
<td>Murray</td>
<td>0</td>
</tr>
<tr>
<td>Paulding</td>
<td>1</td>
</tr>
<tr>
<td>Putnam</td>
<td>1</td>
</tr>
<tr>
<td>Richmond</td>
<td>0</td>
</tr>
<tr>
<td>Towns</td>
<td>1</td>
</tr>
<tr>
<td>Troup</td>
<td>1</td>
</tr>
<tr>
<td>Union</td>
<td>2</td>
</tr>
<tr>
<td>White</td>
<td>0?</td>
</tr>
<tr>
<td>Wilkes</td>
<td>1</td>
</tr>
</tbody>
</table>

Collector Information

Archaeologists are indebted to many relic collectors who have located archaeological sites in Georgia and have shared their information. For professional archaeologists, this negotiation is often a love-hate relationship. Professional ethical proscriptions for archaeologists, as stated by the Registry of Professional Archaeologists, the Georgia Council of Professional Archaeologists, the Society for Georgia Archaeology, and other societies, temper this relationship. Private collectors, many of whom do not recognize some of these ethical boundaries, are often a unique source of archaeological information. Therefore, it is incumbent for archaeologists to establish relationships with the relic collector community in order to accurately understand the past. At present the State of Georgia has no formal Collector Survey, although pilot studies have recently been conducted in the Oconee Valley, Flint River watershed (Elliott and Dean 2005). The Society
for Georgia Archaeology has plans for a Collector Survey but it has yet to reach fruition. Other collector information for Georgia is spotty and not systematically recovered. Numerous important relic collections that relate to soapstone studies have been identified. These are discussed in the following.

Charles C. Jones Jr.

Charles C. Jones, Jr. is arguably the father of Georgia archaeology and his seminal book, *Antiquities of the Southern Tribes...* stands as a major early treatise on archaeology worldwide. His 1861 *Monumental Remains of Georgia* is the earliest discussion of Late Archaic sites in the Augusta vicinity, including Stallings Island. Sadly, Jones made no wonderful description of any soapstone quarry site in Georgia. He did, however, describe many artifacts made from soapstone and he discussed the Archaic shell midden deposits at Stallings Island and at Kiokee Creek on the Savannah River where many soapstone items were discovered by him and others. Jones’ excavations at Stallings Island in the 1850s, represent the earliest documented examination of an Archaic site in Georgia. Although Jones’ collection may have been very large in its glory, only a smattering of it remains in museum context. His artifacts are scattered at the Smithsonian Institution’s National Museum of Natural History (NMNH), American Museum of Natural History (AMNH), the Peabody Museum, and possibly elsewhere. The author has examined Jones’ soapstone artifacts that are housed at the NMNH and the AMNH.

Roland A. Steiner

Roland Steiner is one of the lesser known figures in early research in the Savannah River valley, but, like C.C. Jones, Jr., Steiner conducted extensive fieldwork in Georgia. Steiner was born into a wealthy family in 1839 or 1840. His father, Henry H. Steiner, was a prominent physician, whose practice was in Augusta, Georgia. Both Henry and son Roland established plantations in Burke and Columbia counties, Georgia. Roland Steiner died at his home in Columbia County in 1906. He was awarded a medical degree in 1864 from the Medical College of Georgia in Augusta, but did little work as a physician. Instead, Steiner became an avid relic collector and folklorist. Steiner’s 78,000+ artifacts were purchased by the Smithsonian Institution at the turn of the century. Steiner's collection from the central Savannah River region in Columbia County includes more than 20,000 artifacts. A large portion of these came from four specific localities on Big Kiokee Creek, areas that have significant Middle and Late Archaic components. His writings consist of one short article about the Kiokee Creek site and a chapter in Warren K. Moorehead's *Prehistoric Implements* (Steiner 1899; Steiner 1900). While his published record is scant, Steiner was a prolific letter writer (Steiner 1892-1905). Each of his artifact shipments to the Smithsonian Institution was accompanied by lengthy letters that provided maps and descriptions, and other details pertaining to the collections. In these letters Steiner described his excavation at the Kiokee Creek shell midden, and included a map of the Kiokee Creek region. Steiner's collection at the Smithsonian is largely unanalyzed and awaits research.

Roland A. Steiner can be described as a disciple of C.C. Jones, Jr. Steiner followed in the footsteps of Jones visiting many of the more prominent aboriginal sites in Georgia. Steiner also visited sites unknown to Jones. In the case of Kiokee Creek, Steiner followed up on Jones’ investigations and greatly advanced the knowledge of Archaic sites in this vicinity. This knowledge, however, was not made widely known by Steiner through publications. Rather, it was locked inside
correspondence between Steiner and the curators at the various museums who ultimately ended up with his collections. These include the NMNH, the Field Museum, and the AMNH. The author has doggedly pursued Steiner’s trail and this story continues to unfold. As pertains to soapstone studies, Steiner’s collection and his archaeological investigations at the Kiokee Creek sites are most notable.

Dr. Roland A. Steiner resided near Grovetown (Columbia County), and near Waynesboro, Burke County, during the 1880s, 1890s, and early 1900s and he collected and excavated a great number of artifacts from sites in these two counties, as well as from Etowah Mounds, Shoulderbone Mounds, and Hollywood Mound. The Steiner collection from Columbia county is very large and comes from four primary sites: 9CB23 (Burke Mountain), the entire ridge east of 9CB23, 9CB25, and an as yet, unidentified location known only as Steiner's Spring Place. Most of this collection was gathered from property that the Pollards now own. Nearly all of this collection, which originally totaled more than 78,000 artifacts, was stored at the Smithsonian Institution.

The large depression in the river levee below the mouth of Kiokee Creek, which was observed by Mr. Elliott in 1984, may be a very old archaeological excavation, possibly one conducted by Dr. Steiner. I could find no direct reference to any work at this spot, but there was a hint in one article written by Robert Steiner that Roland may have dug in the area. Steiner’s collection are stored in the NMNH in Suitland, Maryland and Washington, D.C. The author has since identified other major artifact collections by Steiner at the AMNH in New York and the Field Museum of Natural History in Chicago. Other museum collections from Kiokee Creek have been identified by the author but have not been examined.

William Claflin

William Claflin represents the next generation of relic collectors in the Savannah River valley following Roland Steiner. At the Stallings Island site Claflin dug at several locations on the mound’s summit and found additional human burials. Realizing his lack of expertise, Claflin enticed the Peabody Museum in Massachusetts to mount an expedition. Although Claflin’s early twentieth-century excavations are poorly documented, ironically, he later produced the most thorough report of investigations of any of researcher. His report was published by Peabody Museum in 1931 and details the excavations that were conducted by the husband and wife team of C. B. and Harriet Cosgrove in the winter of 1929. Although their work was well documented in Claflin’s report, the precise location of their excavation block on the modern-day landscape could not be linked to this information.

Claflin’s survey of other shell midden sites in the surrounding region during his early years. The Peabody Museum contains the materials gathered by Claflin from Stallings Island. A small collection, attributed to Claflin's earlier excavations, found their way into private hands, and finally to the University of South Carolina (Sassaman and Lewis 1990). Chester DePratter, a later excavator at Stallings Island, considers that many of the artifacts unearthed by Claflin were left at the edge of the excavation pit (Chester B. DePratter, personal communication 1993). Sassaman (1999) led excavations at Stallings Island in 1999, which revealed that many of the large pit features that had been documented in Claflin’s plan map had been left unexcavated.
E.B. Mell

E.B. Mell was a prominent relic collector (and Athens area educator) in northeastern Georgia in the 20th century. His large relic collection included many sites in Wilkes County, Georgia. His collection is curated at the Laboratory of Archaeology, University of Georgia. Unfortunately, Mell’s site map and other provenience information are lost. Consequently, we are left only with the information on the artifact boxes themselves, most of which do not provide any locational data beyond the county level. Mell’s Site 9WK5, whose location is unknown, yielded eight soapstone vessel sherds and one perforated slab. Mell’s Site 9WK12, which was located on the Love DuBose farm (then owned by Bounds) on the east bank of the Little River one mile south of the bridge on Sharon Road, yielded 40 soapstone fragments. Only one was a bowl sherd and 38 are flat slabs and mostly perforated. One soapstone fragment with incised lines on both sites was from this site. Mell’s Site 9WK14, which was located on the Leonard Wray farm on the south bank of the Little River at the bridge on Sharon Road, yielded eight soapstone bowl sherds, seven slab fragments (none with perforations), and five other worked soapstone pieces. Mell’s Site 9WK28, location unknown, yielded 28 soapstone vessel fragments and two perforated soapstone slabs.

Prehistoric Soapstone Distribution Networks in Georgia

The Late Archaic is characterized by a variety of traits, including a preponderance of stemmed projectile point types such as Savannah River, Appalachian Stemmed, Wade, Ledbetter, Otarre, Elora, Paris Island Stemmed, Mala, and other undefined types (Bullen and Greene 1970; Cambron and Hulse 1983; Chapman 1981; Coe 1952, 1964; Harwood 1973; Keel 1976; Sassaman 1985; Whatley 1985). Use of ground stone items, particularly soapstone, shows a marked increase during the Late Archaic in the Georgia Piedmont. Ceramic and stone vessels enter the archaeological inventory of the southeastern United States during the final phases of the Late Archaic Period. Discussions of the Late Archaic of the Georgia Piedmont have been presented in various reports, particularly in works by Claflin (1931), Fairbanks (1940, 1942), Miller (1949), Stoltman (1972), Bullen and Greene (1970), Cruse (1972), Cruse and DePratter (1976), Elliott (1981), Dickens and Carnes (1983), Anderson and Schudelenrein (1985), and Wood et al. (1986). Interest in the prehistoric use of soapstone in eastern North America is first documented during the mid to late nineteenth century, with major contributions to the topic by Holmes (1897), Putnam (1878), and others (Reynolds 1878). The industrial character of soapstone bowl manufacture must have captured the curiosity of students of the industrial age who sought to understand the manufacturing technology and mining ingenuity of earlier peoples. Soapstone quarries were found in the vicinity of Washington D. C. and several northern cities, and this close proximity to the "great minds of the times" was a fortunate coincidence for soapstone studies. By the mid nineteenth century, soapstone was an important industrial stone and many aboriginal quarries were being destroyed by modern quarrying. The nineteenth-century soapstone mines were located on the larger, higher grade soapstone deposits while the smaller deposits of soapstone were left undisturbed or modified only slightly for local soapstone consumption within the community. The interest in soapstone, as reflected by the sheer quantity of published reports on the topic, waned during the early twentieth century. Perhaps this was due in part to the decrease in the economic importance of soapstone for industrial purposes, or perhaps the topic was considered to be exhausted for its contributions to scientific knowledge. When David Bushnell (1939) published a summary article about the use of
soapstone in the eastern United States, there seemed to be little left to say about the industrial technology of soapstone.

A few researchers continued to pursue the subject through the mid twentieth century (Crozier 1939; Dunn 1945; Fowler 1947, 1966), although more interest was focused on ceramics and diagnostic chipped stone tools. The great mass of excavated materials that were accumulated as a result of public work projects administered during the Roosevelt era forced soapstone studies to take a backseat as archaeologists busied themselves with problems of "horizons" and "traditions." The majority of sites excavated during this period were situated in river valleys, where soapstone quarries are not usually found. Despite the emphasis on river basin archaeology, a trickle of investigations on soapstone quarries continued. The advent of radiometric dating procedures in the early 1950s allowed refinements in dating Archaic period sites, and by the 1960s, the period of soapstone vessel use had been placed by general consensus at the end of the Archaic period. In summary paragraphs of countless archaeological reports of the 1960s to the present, soapstone received only passing mention. Normally it was simply described as one diagnostic of the Late Archaic Period in Georgia, along with stemmed Savannah River projectile points, and perforated soapstone "netsinkers."

Renewed interest in soapstone research began in the early 1970s when sourcing techniques of Neutron Activation Analysis (NAA) gained in popularity. Numerous tracing techniques were applied to soapstone with mixed results (Allen et al. 1975, 1978; Becker 1976a-c, 1978a-b, 1980; Bohanan 1975; Wood et al. 1986; Georgia Geological Survey 1978, 1990; Higgins et al. 1986; Kohl 1976; Kohl et al. 1979; Luckenbach et al. 1974; Holland et al. n.d.; Turnbaugh and Keifer 1979). The basic concept was that distinct "fingerprints" could be established based on the nuclear make-up of outcrops for soapstone quarry sites. These identifying fingerprints could be matched with finished soapstone artifacts found elsewhere, on non-quarry sites, and this information could then be used to demonstrate trade relationships for the Late Archaic. This interest in NAA was not restricted to North America, but was global in its application. The results of these studies were stretched beyond the limits of reliability. Too few quarries had been identified and too few samples studied to make any trade connection between quarry sources and traded artifacts. Samples of soapstone from quarried outcrops on Soapstone Ridge in Georgia were included in one of these early studies (Holland et al. n.d.). Soapstone artifacts from habitation sites in the Atlanta vicinity were also included. By the late 1970s, survey surface reconnaissance by Georgia State University had identified 62 prehistoric sites on Soapstone Ridge, including 17 soapstone vessel quarries, 23 soapstone vessel workshops, and 22 habitations (Dickens and Carnes 1983). Still lacking from Soapstone Ridge research were detailed investigations of non-quarry sites such as workshops or habitations. Little was known empirically about the settlements associated with the quarries regarding such topics as site permanence, season of use, or possible structural evidence. Elsewhere in Georgia, Elliott (1981) examined soapstone artifacts recovered from the Lake Oconee in the Georgia Piedmont from a sub-regional perspective. Late Archaic exchange mechanisms within the community were examined; reciprocal trade was the only exchange mechanism identified within the study area, and Elliott suggested that archaeologists use soapstone data to quantitatively define the Late Archaic exchange network. This distributional study utilized artifact data recovered from several hundred surface sites within the Oconee River drainage. Soapstone vessel quarries were located within this region and the spatial relationship of artifacts to quarry were closely examined. Elliott found that soapstone vessel fragments were found in the highest density near the quarries. These sites also produced the highest diversity of other soapstone artifact types. Thick unfinished
vessel fragments were observed to be tightly linked to quarries, and were not found greater than one kilometer from a quarry. Most of the sites examined contained only one soapstone sherd, and most of the sherds were too small to record vessel form data. One quarry site was mapped in detail and collected. This site had many unfinished vessel rejects and a large quantity of diabase quarry picks. Elliott's soapstone research then shifted to an examination of soapstone sites along the Savannah River (Elliott and Doyon 1981; Elliott 1984, 1986; Wood et al. 1986). At the Lovers Lane site near Augusta and at other sites in the upper Savannah River region of South Carolina, excavations in stratified deposits suggested that the abundance of soapstone perforated slabs decreased as fiber tempered pottery increased (Elliott and Doyon 1981; Elliott 1984a). Similar observations had been made at Stallings Island by Crusoe and DePratter (1976). The absence of soapstone vessels from key Late Archaic sites along the Savannah was recognized and required explanation, suggesting that the accepted position that soapstone vessels preceded fiber tempered ceramics was in error. The age of the soapstone bowl industry has been placed within the Late Archaic to Early Woodland period between 3,500 and 1,000 B.C. (Dickens and Carnes 1983). From other excavated sites it can be shown that soapstone vessels were a product of the Late Archaic to Early Woodland transition and the main time period of manufacture can be bracketed between 1,500 and 600 B.C. (Ritchie 1969; Faulkner and McCollough 1973, 1974; Webb 1977). The nonexistence of a soapstone vessel technology prior to 1,500 B.C. is based on negative evidence from key sites that contain a high diversity of Late Archaic remains. Sites such as Indian Knoll (Webb 1974) and Riverton (Winters 1969) have no soapstone vessels, but this absence can be explained by the great distance from the source. In areas containing soapstone outcrops, this explanation is less convincing. The Savannah River is acknowledged as a major culture area during the Late Archaic period, and soapstone use has often been listed as one attribute of the Late Archaic on the Savannah River. No soapstone vessel fragments were recovered from excavations at Stallings Island or at other nearby Stallings Island Phase sites such as Lake Springs, Mim's Point, or Rabbit Mount (Clafin 1931; Caldwell 1951; Bullen and Greene 1970; Miller 1948, 1949, 1974; Fairbanks 1942; Jones 1873; Stoltman 1974; Elliott 1984; Crusoe and DePratter 1976). This dearth is not due to an absence of soapstone quarries or soapstone vessel technology in the area, as bowl quarries and bowl fragments occur widely in the region (Elliott 1981a; Elliott and Doyon 1981; Wood et al. 1986). Judging by the range of material culture seen, a full range of activities was carried out on these sites. If the use of soapstone vessels had spanned the Stallings Island Phase, there would be expected soapstone vessel residue on these sites. The only other explanation would be that soapstone vessels were used by contemporary groups of this period, but the structure of society prevented these items from being discarded on major midden sites. This interpretation seems unlikely, it is likely that soapstone vessel technology appeared late during the Stallings Island Phase in Georgia. The placement of stone vessel technology after the development of ceramic vessel technology runs counter to the logical progression of human development. The finding of soapstone tempered pottery on sites in the mid-Atlantic region (Manson 1948; Mayr 1971) seemed to form a logical transition from stone to ceramic bowls, but in actuality the Marcey Creek wares dated later than early fiber tempered wares. Although the sequence of stone bowl to clay bowl seemed logical, it was not borne out by archaeological fact. Rather, the data suggest soapstone vessels developed as a supplement to a preexisting ceramic industry. The early ceramics were poorly made and probably ill-suited to direct cooking over an open fire, while soapstone vessels could be heated directly and would have made a more desirable cooking vessel. The obvious drawbacks of soapstone vessels included their unwieldy weight and restricted availability. Clay could be procured at a local level, while soapstone vessels could only be acquired
by direct acquisition by long distance travel or by trade. The economic advantages of using locally available material (i.e. ceramics) for utilitarian cooking vessels forced the abandonment of soapstone vessel technology, especially after ceramics had reached a degree of refinement where vessels could be directly heated for cooking. This association of soapstone vessels with the Terminal Archaic is supported by radiocarbon dates from excavated sites in Tennessee. In the Nickajack Reservoir of eastern Tennessee, soapstone vessels have been found closely associated with Wade projectile points and dated to 755 B.C. and 1,010 B.C. (Faulkner and McCollough 1973:320, 1974:422). At the Iddins site, soapstone vessel fragments were found in association with a variety of small stemmed point types termed Iddins Undifferentiated Stemmed. The Iddins site occupation dated between 1,705 and 1,255 B.C. (Chapman 1981:99,140-141). In the Weiss Reservoir of northern Alabama, soapstone vessels were found closely associated with Coosa Stemmed projectile points (DeJarnette et al. 1973:107-110). The length measurement of the Coosa Stemmed points as shown by DeJarnette et al. (1973:181) is under 4 cm. These vessels were hemispherical with lug handles. At the Flint River site in Alabama, Webb reported several whole soapstone and sandstone vessels (Webb and DeJarnette 1948). Both hemispherical and flat-bottomed vessels were recovered from this site. While Webb took the position that the soapstone vessel culture was stratigraphically below the ceramic cultures, the fiber tempered component at this site was very sparse and scattered in the upper disturbed level and their temporal relationship with the soapstone vessels was vague.

The association of soapstone vessels on Terminal Archaic, Poverty Point culture sites in Louisiana has been well demonstrated (Ford 1969; Gagliano and Webb 1970; Gibson 1973, 1974; Webb 1944, 1968, 1977; Broyles and Webb 1970). Webb (1968:398) reports a date of 1,240+/-130 B.C. for soapstone vessels at the Cedarland Plantation site in Louisiana.

Three main fiber tempered ceramic series have been recognized in the southeastern states--Stallings Island (focused on the coastal plain and fall line regions of Georgia and South Carolina), Wheeler (focused in northern Alabama and Tennessee (Griffin 1939)), and Orange (focused in Florida and the extreme southern coast of Georgia) (Sears and Griffin 1950). Sears and Griffin (1950:1) describe the three fiber tempered series: "The Wheeler Series is characterized by a flat-based cup, the Stallings Series by the Shallow open bowl, and the Orange Series by a still different form, a flat-bottomed pan with relatively low vertical to slightly outslanting walls." They note that some temporal overlap exists between the production of decorated Stallings Island fiber tempered wares and Wheeler wares. The terminal date for Stallings Island wares is not clearly defined as there is a hiatus of excavated ceramic sites in the Stallings Island ceramic heartland during the first millennium B.C. At the Lover's Lane site, 9Ri86, near Augusta, a smooth stratigraphic transition between Stallings Fiber Tempered ceramics and ceramics without fiber tempering was observed, but no radiocarbon dates were obtained from this excavation (Elliott and Doyon 1981). The Thoms Creek Series --which is somewhat similar in appearance to Stallings Island, but lacks the fiber tempering --appears to temporally overlap with the Stallings Island Series (Trinkley 1980; Michie 1969). In summarizing the temporal data for Stallings Island and Thoms Creek ceramics in Georgia and South Carolina, Trinkley (1980:5) shows a date range of 2,500 to 1,300 B.C. for Stallings Island and 2,200 to 1,000 B.C. for Thoms Creek. The Wheeler vessels are characterized as large cups with straight to slightly convex walls and circular flattened bases, slightly concave or convex. These vessels range between 20 to 25 cm in diameter, and approximately 10 cm in height (Sears and Griffin 1950). Soapstone Ridge occupies a position between two core areas of fiber tempered ceramics -- south and east of the geographic range of Wheeler ceramics and north and west of the
geographic range of Stallings Island ceramics. The same tripartite division of vessel forms seen among fiber tempered ceramics is also reflected in the soapstone bowl industry in the southeastern United States (Dickens and Carnes 1983; Elliott 1986c; Ferguson 1976; Kelly 1969).

The Oconee Valley

Elliott’s thesis work on soapstone use in the Lake Oconee region was the first detailed regional analysis of soapstone artifact distributions and their relationship to local quarries in Georgia (Elliott 1980, 1981a). That original study examined soapstone distributions in four counties: Greene, Hancock, Morgan and Putnam. The most abundant data on soapstone artifacts and soapstone quarrying is gleaned from a 1980 study that was based on the available surface information (Elliott 1980). The Wallace Reservoir Mitigation survey and other surveys directly associated with Lake Oconee construction identified more than 350 sites containing soapstone artifacts (Gresham 1987). By far the greatest frequency of distribution of soapstone items occurs beneath the area now covered by Lake Oconee.

For the present discussion, the Lake Oconee study universe is expanded to include Jackson, Madison, Oconee and Oglethorpe counties. The systematically collected samples from these eight counties: Greene, Hancock, Jackson, Madison, Morgan, Oconee, Oglethorpe and Putnam provides a case study that can be tested against other areas of Georgia and eastern North America, referred to here as the Oconee Valley sample. To date many thousands of hectares in the piedmont portion of the Oconee Valley has been systematically covered by surface survey (DePratter 1976; Fish and Gresham 1990). The Lake Oconee dataset has since been supplemented by numerous systematic upland clear-cut surveys that provide inter-riverine soapstone distribution information, for example, Elliott 1981b, 1983; Elliott and Jefferies 1978; Freer 1989, 1991:43-62; Chamblee 1996, 1997; Ledbetter 1978, 2006).

Inter-riverine areas of the Oconee River watershed contain less evidence for prehistoric soapstone use. Jefferies and Elliott examined a systematic sample of the upland regions of Lake Oconee and recorded 45 archaeological sites. Continued upland surveys by Elliott in the Beaverdam and Richland creeks watersheds of the Oconee River uplands and increased that number to 117 upland sites (Elliott 1982, 2013). Only three sites in that study yielded any soapstone artifacts and these were single instances in all cases. No soapstone bowl sherds were represented in this small sample. The sparsity of soapstone finds in the inter-riverine areas is further illustrated by Freer’s study of Oglethorpe County, Georgia (Freer 1989). She summarized surface survey data from eight large timber clear-cuts, totaling 1,198 ha, which were well spaced across the county. Freer reported finding 28 Late Archaic sites but only three sites that yielded soapstone artifacts. No soapstone quarries were identified in her study areas.

Elliott (1980) ranked 350 sites yielding soapstone in the Oconee Valley sample from 1-15 by their “soapstone intensity”, or where residual evidence suggests that soapstone was extensively consumed. Under this scheme, Rank 1 Sites possessed the greatest intensity and Rank 15 Sites had the lowest. Most sites in the study sample fall into the lower intensity grouping. In terms of soapstone vessel sherd distributions, for example, the great majority of sites containing soapstone vessel sherds yielded only one or two specimens. The higher ranked sites (Ranks 1-6) in the Oconee Valley sample contained: numerous soapstone artifacts, comparatively higher weights of total soapstone, and general medium or higher soapstone artifact diversity. Most of these probably
represent small villages or permanent habitations of some sort. Sites yielding high numbers of soapstone vessel sherds (more than 4 sherds) include: 9GE263—74 sherds (quarry); 9GE313—13 sherds; 9GE819—11 sherds; 9PM467—10 sherds; 9MG198—9 sherds; 9GE267, 9GE312, 9GE324 and 9MG214—7 sherds each; 9GE262, 9GE818, 9GE948, and 9MG111—6 sherds each, and 9GE437, 9GE511, 9GE759, 9GE794 and 9GE977—5 sherds each. The Oconee valley sample included only one site that displayed clear evidence of stone bowl quarrying. Several additional locations yielded soapstone (and related ultramafic rocks) that were suitable for manufacturing but no archaeological evidence was directly associated with these areas.

Excavations in the Lake Oconee project generated data from the Oconee River watershed regarding soapstone use. Site 9PM205 is the most extensively excavated Late Archaic period site in the region (Rogers 1982). A large block excavation (Provenience V) produced the most soapstone items in buried Late Archaic period context. Unfortunately, artifact counts for soapstone objects recovered from this site are not immediately unavailable. Rogers illustrates four examples of perforated slab fragments excavated from the site (Figure 69). The ground stone artifact distribution map of Provenience V at 9PM205 reveals 60 soapstone artifacts, which are well-dispersed over the excavated area. No soapstone vessel sherds were reported from these excavations. Rogers noted that almost all of the excavated projectile points were the Savannah River type. No radiocarbon dates were obtained from the 9PM205 excavations.

![Figure 69. Examples of Perforated Soapstone Slabs, 9PM205 (Rogers 1982: Plate 11).](image)

Site 9PM212 was another Late Archaic site where block excavations yielded numerous soapstone artifacts from a buried Late Archaic context. These included four soapstone cooking slab fragments, one soapstone pitted stone and eight other soapstone pieces. The report mentions no soapstone vessel sherds from this site. The site also yielded Stallings Plain ceramics and Savannah River stemmed projectile points. No radiocarbon dates were obtained from the excavations (Hally and Rudolph 1982a).

Block excavations at Site 9GE145 yielded soapstone vessel sherds in buried Late Archaic context (DePratter 1976; Hally 1982). Excavations at this site also produced Stallings ceramics, Savannah.
River projectile points, one hearth feature, undecorated Stallings Island fiber tempered pottery sherds. The most remarkable find from the excavation block (Provenience 2, Level 7) was a reconstructed soapstone bowl, which was refitted from 19 fragments. An AMS date of 3360+/-30 YBP was obtained from soot that was cemented on the exterior of this bowl (Cherninsky 2008). The vessel form was an oval bowl with a rounded base, straight vertical sides and rounded rim (Figure 70). It measured 32 cm by 17 cm and 14.5 cm in depth.

Figure 70. Reconstructed Soapstone Bowl, 9GE145 (Hally 1982: Plate 6).

Block excavations at site 9MG90 yielded a minor amount of soapstone artifact from buried context (Smith and Hally 1981:20). The assemblage included two soapstone vessel sherds and eight other soapstone artifacts. Lesser amounts of soapstone were recovered from excavations at 9GE5, 9GE150, 9GE153 and 9PM220. One Savannah River stemmed projectile point was recovered from the excavations. No radiocarbon dates were obtained.

A systematic subsurface testing program implemented in the Lake Oconee project generated important soapstone artifact and Late Archaic period information. Ledbetter (1978) reported on 10 tested archaeological sites that contained aboriginal soapstone artifacts. Site 9PM351 yielded the most soapstone artifact, including six perforated slab fragments, three vessel sherds and 14 other fragments. Site 9PM328 yielded one perforated slab and four other fragments. Sites 9Ge817 and 9MG183 yielded multiple soapstone sherds (exact counts are unavailable) and 9PM588 produced two sherds. Site 9PM243 yielded one vessel sherd. Other sites in the testing program that yielded minor amounts of soapstone were 9GE257, 9GE393, 9GE881 and 9GE948.
Ledbetter compiled information on Late Archaic and Terminal Archaic projectile points in the same region and the Lake Oconee soapstone data were compared to his data. Sites yielding major amounts of projectile points. Approximately one-half of the sites in the study area containing major amounts of stemmed projectile points also were high intensity soapstone utilization sites. Sites 9GE282, 9GE347, 9GE511 and 9PM351, also yielded major amounts of Late Archaic or Terminal Archaic projectile points.

The development of ceramics at the end of the Archaic period relates to soapstone use during that same period. Fiber tempered pottery has a more restricted regional distribution in southeastern North America and is entirely absent in the Mid-Atlantic and the Northeast. Fiber tempered pottery was widely distributed in the Oconee Valley sample. It is represented by 50 sites that contained one or more fiber tempered pottery sherds. As with the soapstone bowl sherd distribution, most sites yielding fiber tempered wares produced only one or two specimens. Nevertheless, their presence on these sites attests to the consumption of early pottery vessels and their regional distribution within the valley indicates that their usage was pervasive. Of sites containing fiber tempered pottery sherds in the Oconee Valley sample, only five also contained soapstone vessels and only three contained perforated soapstone slabs. When the soapstone artifact distribution data is compared with the fiber tempered distribution data several interesting observations may be made. Of sites containing fiber tempered pottery sherds, none yielded major amounts of Savannah River type projectile points. Projectile points on these sites were of the smaller stemmed varieties (and possibly other notched point varieties).

The Savannah Valley

The Savannah River valley provides another valuable case study in aboriginal soapstone production, distribution and usage. Unlike the Oconee River valley, the Savannah has a long historic of archaeological research on its Archaic period sites, beginning with the work of Charles C. Jones, Jr. in the mid-19th century.

Robert Wauchope's WPA survey and excavation of northern Georgia, finally published in 1966, barely touched on Savannah River valley (Wauchope 1966). The bulk of Wauchope's collection was apparently discarded, but a small type collection remains at Tulane University, in New Orleans. The most pertinent Archaic site mentioned by Wauchope was Price's Island, an important Late Archaic midden site later flooded by Clark Hill Lake.

Joseph Caldwell and Antonio J. Waring, Jr. made a large collection of artifacts from the surface of Stallings Island during the late 1930s (Williams 1977). In 1940, two WPA archaeologists, Myers (first name unknown) and Charles Fairbanks, led successive excavations at Stallings Island resulting in a published trait list, but little else (Fairbanks 1942). The primary shortcoming with the WPA investigations, and other projects prior to the mid 1970s, was the lack of adequate reporting. Other details of the WPA work at Stallings Island were found in unpublished field notes at the Park Service's Southeast Archaeological Center in Tallahassee and the artifacts from the WPA work are housed at Ocmulgee National monument in Macon, Georgia (Fairbanks 1940; Myers 1940). In reviewing Myers and Fairbank's field notes, it is apparent that they exposed a probable Late Archaic pit house, possibly similar to that described by Jerald Ledbetter at the Mill Creek Site in Warren County, Georgia (Ledbetter 1991). With the apparent loss of excavation plans and site maps from the WPA work, however, only a sketchy reconstruction is possible. Myers
describes the house, of which one quarter was excavated, as a saucer shaped structure with red clay walls. The Stallings Island pottery types were formally defined in 1950 by William Sears and James B. Griffin (1950).

Survey and excavation at lakes Hartwell and Strom Thurmond (Clark Hill) by Carl Miller and Joseph Caldwell were conducted as part of the Smithsonian Institution's River Basin Survey during the 1950s (Caldwell n.d., 1951, 1952, 1954, 1974; Miller 1948, 1949, 1974). Miller's test excavations at Lake Springs in 1948 were documented in his *American Antiquity* article (Miller 1949) and his river basin surveys of Hartwell and Clark Hill reservoirs are recorded in unpublished preliminary reports. Clark Hill yielded a significant amount of data on the Middle and Late Archaic, while Hartwell yielded almost none. Recent examination of 205 archaeological sites recorded by Miller in these two lakes revealed large numbers of Middle Archaic and Late Archaic components (Elliott 1993). Joseph Caldwell returned to the Lake Springs site in 1951 and conducted large block excavations. There he defined the Old Quartz culture, but no formal description of his excavations was made and the artifacts have not been located (Caldwell 1954, n.d.; Johnson 1984). Caldwell's excavation plan was reconstructed by Elliott from field notes on file at the University of Georgia.

Survey of the intermediate area between Lake Hartwell and Clark Hill Lake, an area that later became Lake Russell, also was instigated in the 1950s and 1960s, but this project was not to be completed until the late 1980s (Anderson and Joseph 1988; Gaines 1955; Hemmings 1970; Hutto 1970; Midgette 1968a). Construction of the three Army Corps of Engineer's reservoirs (Hartwell, Russell, and Clark Hill/Thurmond) had an overwhelming impact on Archaic resources in the region, and the scale of this impact has yet to be assessed.

George Lewis and others with the Augusta Archaeological Society conducted numerous surveys and excavations in the central Savannah River area. Their efforts were particularly useful in identifying Archaic sites along the Bobby Jones Expressway route south and east of Augusta [see the History of Augusta Archaeological Society by Lewis (1989)]. Members of the Augusta Society also participated in excavations, led by Donald Crusoe, at the Stallings Island mound site as part of his dissertation research on early fiber-tempered pottery (Crusoe 1972; Crusoe and DePratter 1976; Chester B. DePratter personal communication, 1993). Crusoe's excavations at Stallings Island and coastal shell middens are briefly described in a summary article, but unfortunately no site plan of his work has been published (Crusoe and DePratter 1976). A portion of the artifacts from Crusoe's study are at the University of Georgia, although the pottery seems to be missing (Kenneth A. Sassaman personal communication January, 1991). Earlier amateur excavations at Stallings Island by Bruce Greene were reported by Ripley Bullen (Bullen 1961; Bullen and Greene 1970). A portion of Greene's collection, mostly ceramics, is curated in the University of Florida in Gainesville, but the location of the lithic artifacts is not known.

Researchers from the University of North Carolina began to take an active interest in the Savannah River region. Joffre L. Coe documented stratified Archaic sites in North Carolina creating a cultural sequence that has proven to be remarkably accurate including Stanly, Morrow Mountain, Guilford, and Savannah River (Coe 1952, 1964). One of Coe's students, Richard Smith, conducted survey and test excavation at numerous sites in the central Savannah River area in 1970. Smith's excavations at the Uchee Creek site yielded three radiocarbon dates for the Late Archaic period.
Smith also defined the Kiokee Creek Stemmed point for the region. His unfinished dissertation research has remained obscure (1974).

The intensity of survey became increasingly rigorous through time, and there is a great deal of variability evident in the quality of this early CRM work. See, for example, differences in survey methodology employed in the Richard B. Russell Lake project (Anderson et al. 1993; Elliott and Blanton 1985; Fish and Gresham 1990; Hemmings 1970; Hutto 1970; Taylor and Smith 1978). Anderson and Joseph (1988) provide a good summary of Richard B. Russell archaeology, which included excavations of several important Archaic sites. Early CRM surveys in South Carolina such as the Laurens-Anderson and I-77 highway surveys introduced a rigor into surveying for sites in the region, and these early studies began to demonstrate the density of upland Archaic sites in the Savannah River drainage basin (Goodyear et al. 1979; House and Ballenger 1976). Since 1980, survey coverage in the region has expanded greatly, principally the result of compliance surveys on the U.S.D.A. National Forests; the Department of Energy's Savannah River Site; and U.S. Army's Fort Gordon Reservation. The trend has continued to the present resulting in several thousand previously unknown Archaic sites and tens of thousands of acres surveyed. A summary of research on the Savannah River Site has been prepared, and a synthesis of the U.S.D.A. Sumter National Forest is in progress. The rate at which new site data accumulates with CRM-mandated inventory, however, will soon make these synthesis outdated (Sassaman et al. 1990).

Studies of specific Archaic sites in the region also expanded during the late 1970s and 1980s. Rowe Bowen's survey and excavation at 9Ri(DOT)3 and the Lover's Lane site was among the first reported examinations of a non-shell Late Archaic site in the Augusta area (1978). Later excavations at the Lover's Lane (9RI86), Augusta Levee (9RI88), and Taylor Hill (9RI89) provided a better understanding of Archaic settlement in the fall zone section of the valley (Elliott and Doyon 1981; Ferguson and Widmer 1976).

The Richard B. Russell Reservoir project, directed by the National Park Service, resulted in major advances in Archaic research in the valley. The lack of coordination between the dozens of excavation teams including a large number of universities and private companies created a situation somewhat analogous to the construction of the Tower of Babel. Survey and testing by Thunderbird Research, Inc., as well as geomorphological, palynological, and pedological studies of the river valley should have set the stage for an excellent research project. Unfortunately, the results of these studies were not available to the archaeological teams until after the excavations were completed and the lake waters were rising. Consequently, this information was not used to intelligently select areas for excavation [See Anderson and Joseph 1988 for a thorough review of Russell Reservoir research]. Archaeologists with Gilbert Commonwealth conducted excavations of several Late Archaic sites in the Russell Reservoir, the most noteworthy was the Rocky River site (Anderson and Schuldenrein 1985; Anderson et al. 1985). Other significant excavations of Archaic sites include work by the South Carolina Institute of Archaeology and Anthropology at Gregg Shoals (Tippitt and Marquardt 1984). Excavations at Sara's Ridge in Anderson County, South Carolina, revealed evidence of a Late Archaic structure and associated activity areas, and provided radiocarbon dates (Wood et al. 1986). Excavations at Paris Island in Elbert County, Georgia produced an artifact rich midden from the Late Archaic period that suggested incipient craft specialization in the manufacture of soapstone perforated slabs. The Paris Island stemmed point was a medium sized stemmed point identified in an aceramic Late Archaic midden deposit at the Paris Island site (Whatley 1985; Wood et al. 1986).
Perforated soapstone slabs were recognized as a distinctive artifact type in the Savannah River valley early on. C. C. Jones illustrates examples that he collected from Late Archaic sites in his 1873 monograph. Long considered to be fishing net weights, or netsinkers, repeated finding of this tool type in cooking features during the past two decades led to a general consensus that these items functioned as cooking stones. Regardless of function, this tool type appears to be a sensitive Late Archaic marker and recent studies by Elliott and Sassaman have recognized the importance of this artifact type in Late Archaic research (Elliott and Doyon 1981; Elliott et al. 1993, 1994; Sassaman 1993).

Late Archaic soapstone quarry sites have been identified in Columbia, Elbert, and Wilkes counties, Georgia and Oconee County, South Carolina (James Bates, personal communication 1993; Elliott 1986b; Elliott and Doyon 1981; Lowman and Wheatley 1973; Wauchope 1966; Wood et al. 1986). The quarry sites are found in both riverine and interriverine settings, but no detailed descriptions are available for any of these sites. A pilot study employing neutron activation analysis was conducted by Southeastern Wildlife Services, Inc. using materials collected from soapstone quarries in Elbert and Columbia counties, Georgia and soapstone artifacts from Sara's Ridge, Paris Island, and the Lover's Lane site in Augusta. Subsequent research also has identified soapstone quarries in Banks County, Georgia (Fryman et al. 1993; Jordan 2005; Jordan and Webb 2002, 2003).

Interest in the Stallings Island shell midden sites has continued through this period, as vandals and developers work to blot out the last vestiges of this cultural manifestation. Excavations were conducted at Mims Point, a Middle and Late Archaic site in Edgefield County, South Carolina by Elliott (1984b) and followed by Sassaman (1993b). Lisa O'Steen's zoo-archaeological analysis of the Mims Point faunal assemblage, followed by Weinand's analysis of faunal material from Crusoe’s and DePratter's excavations at Stallings Island provide the first hard data on Late Archaic faunal use from the region (Weinand 1992). Sassaman also directed salvage excavations at Midden Point, a heavily looted Late Archaic site in Burke County, Georgia, and work has continued on this site under the direction of Steve Hale and Georgia Southern University (Hale 1993; Sassaman 1991b).

Numerous studies were done on the Brier Creek drainage in Georgia, the site of the earlier ill-fated Theriault excavations. Survey, testing, and data recovery excavations during the mid 1980s by Garrow & Associates, Inc. for the Georgia Power Company were conducted during the mid 1980s at a series of buried sites along Brier Creek (Elliott 1986a; Elliott and O'Steen 1987; Espenshade 1986; Garrow 1984; Wise 1986). Although each excavation area was given a separate site number, the loci were surprisingly consistent in content, feature preservation, stratigraphy, and integrity so as to be considered one continuous site separated only by minor drainages. These sites were important for defining Middle and Late Archaic chert reduction strategies for the Brier Creek region. This portion of the Brier Creek terrace near its confluence with the Savannah River experienced peak use during the Middle and Late Archaic periods. This pattern is evidenced by discarded stone debitage and bifacial tools. While none of the Georgia Power Company excavations were located directly on chert quarries, there was considerable intermediate stage reduction debris present. Several Middle and Late Archaic radiocarbon dates were obtained from the sites. The sparseness of features, low frequency of diagnostic artifacts, extensively bioturbated character of the loose sand deposits, and stifling sampling restrictions reduced the value of these
excavations somewhat, but they constitute significant block excavations in the interior coastal plain of Georgia (Elliott and O'Steen 1987).

A number of graduate studies were generated during this period that attempted to make sense of the large amounts of data created by CRM studies. John White's thesis examined Late Archaic settlement in South Carolina (1982). Dennis Blanton's (1983) and Kenneth Sassaman's (1983) theses dealt with Middle and Late Archaic settlement in South Carolina (Blanton 1983; Sassaman 1983). Michael Alterman's dissertation attempted to define the Late Archaic on the upper Savannah River, and he argued against the use of certain projectile point typologies based on his examination of selected projectile point assemblages (1987). Stephen Savage's (1989) thesis dealt with Late Archaic landscapes, although well founded criticism of inadequacies of his study can be found in a review by Rafferty (1992). Savage's study is an example of the misapplication of GIS technology to archaeological data. Sassaman's recently published dissertation research examines the evolution of early cooking technologies using data from the Savannah River valley and the Georgia and South Carolina coast (1993a).

Observations from the central Savannah River valley reveal that an interesting relationship between soapstone perforated slab usage and fiber tempered pottery usage. The Savannah River data also suggests a general lack of co-occurrence of soapstone vessels and soapstone perforated slabs. At Stallings Island (9CB1), for example, despite extensive excavation and the recovery of hundreds of soapstone perforated slab fragments and fiber tempered pottery sherds, only one or two soapstone vessel sherds are reported (Sassaman 1999). Upstream from Stallings Island in the Clark Hill Reservoir (Lake Strom Thurmond), soapstone vessel sherds and Dunlap fabric marked sherds more commonly co-occur than do soapstone vessel sherds and fiber tempered pottery or perforated soapstone slabs (Elliott 1995). The Savannah River data suggests that soapstone vessel usage post-dates the peak popularity of both soapstone perforated slabs and fiber tempered pottery. Elliott and his colleagues (Elliott et al. 1993) suggested that soapstone vessels fall within the Dickens phase, or after 1,450 B.C. Soapstone perforated slabs may predate the development of fiber tempered pottery in the Savannah River valley by several hundred years. Furthermore, extensive excavations in the Brier Creek region (Screven County) suggests that soapstone perforated slab fragments are more common on Archaic sites in the lower Savannah River valley, where soapstone outcrops are absent (Elliott and O'Steen 1987).

Only two soapstone slab quarries can be inferred from the Savannah Valley sample. One is a site now buried beneath the waters of Lake Russell in Elbert County and the other is evidenced in the Steiner collection and was located near the confluence of Kiokkee Creek and the Savannah River. Soapstone slab quarries have not been described for the Oconee Valley sample. Quite possibly most of the slabs that are present in the Oconee Valley may have been manufactured elsewhere.

The Flint and Chattahoochee River Valleys

The author conducted excavations at Falcon Field site (9FY36) on Line Creek in Fayette County. Wood charcoal from a rock hearth containing one large soapstone bowl sherd, which produced a standard radiocarbon date of 2,220+/−150 B.C. (Elliott 1989:93). This date was unexpected, since it represents the earliest date for soapstone vessels in eastern North America. Sassaman (2006) noted that this date is not within the range of most soapstone bowl dates, and he concluded that
the vessel sherd post-dated, and was unrelated to, the rock hearth at the Falcon Field site. This author tends to agree with Sassaman’s conclusion.

In the Oliver Basin on the Chattahoochee River above Columbus, Georgia, McMichael and Kellar (1959:14-135) reported finding soapstone bowl sherds on nine sites. All but one of these sites were located in Lee County, Alabama. Site 9Me205 yielded one soapstone vessel sherd. They estimated the age of most of the sites containing soapstone bowl sherds in the Woodland period.

Soapstone deposits in Lee County, Alabama, which is directly opposite the Chattahoochee River from Muscogee County, Georgia, were quarried in the late nineteenth century. The Columbus, Georgia newspaper noted beautiful specimens of soapstone were found, “on W.P. Spratling’s place at Oak Bowery, near the line of the Columbus and Western railroad, where a quarry has been worked in a very small way for forty years. The stone is of the color of granite, is capable of as fine polish as marble, has been used for hearths and may be used to line furnaces, make backs for grates or in any other way in which fire bricks are used” (Columbus Daily Enquirer 1887:3). The quarry described in this news article is likely located several kilometers southwest of Oak Bower, near the community of Stonewall, Alabama, which is approximately 33 kilometers from Georgia.

Massive archaeological surveys at the Fort Benning Military Reservation have yielded many sites with soapstone artifacts, as well as sites with fiber tempered pottery sherds. Soapstone outcrops do not occur within Fort Benning, so their presence on sites in this region represents a substantial investment in transportation energy. Lake Walter F. George is located many kilometers downstream from naturally occurring soapstone. Nevertheless, UGA excavations in Stewart County at site 9SW34 recovered 12 soapstone bowl sherds (Kelly et al. 1961:20).

Bowls

Soapstone bowl distributions in Georgia are widespread. This artifact category is the most obvious artifact and soapstone bowl sherds are common in artifact collections. Soapstone bowls were manufactured in the Piedmont, Blue Ridge mountain and Fall Line regions of the state. Many bowl quarries have been located and a few have been excavated. Research in the 1970s led by Roy Dickens and Georgia State University students located many stone bowl quarries on Soapstone Ridge near Atlanta. Most of their efforts were at the survey level, although excavations at the Fork Creek Mountain quarry in DeKalb County revealed one example. Unfortunately, the results of that work were never fully reported. Later excavations at a series of sanitary landfills in DeKalb County further documented the stone bowl industry of Soapstone Ridge. Limited excavations at soapstone bowl quarries in Banks and Carroll counties expand on our knowledge of this prehistoric industry in Georgia. Most of the archaeological research on soapstone bowl quarries in Georgia, however, has been at the survey level.

The best survey data for soapstone bowl quarries and associated sites in Georgia comes from the Oconee River valley. Elliott (1981) examined the spatial distribution of soapstone bowls in relation to soapstone quarries and outcrops in the Lake Oconee region. That study explored the social organizational aspects of the soapstone bowl trade viewed at a local level. These data demonstrated that unfinished, thick stone bowls were not transported far from the quarry source. The stone bowl distribution mostly followed a gradual fall-off with increasing distance from the source. Elliott noted exceptions to this pattern in the Richland Creek vicinity, where large Terminal Archaic
habitation sites were located. On a more regional level, soapstone bowls distributions do reflect a gradual fall-off. Soapstone bowls were traded throughout Georgia’s coastal plain and beyond. This trade may be more pronounced on the western side of the state, although this pattern remains to be quantified.

Figures 71 and 72 show two examples of complete soapstone bowls from Georgia. Figure 71 was recently excavated by Stella, Ltd. from a site in Chattahoochee County, Georgia. Figure 72 is from an older collection that is curated at the American Museum of Natural History. It is attributed to the collection of Seaborn Jones.

Figure 71. Soapstone Bowl from Site 9CE608, Chattahoochee County, Georgia.
The temporal relationship between the advent of pottery versus stone bowls in the eastern seaboard remains a topic of debate. This author would argue that the development of the soapstone bowl industry, in Georgia in particular, post-dates the introduction of fiber tempered bowls. To many this concept seems counter-intuitive, since stone bowls look far more “prehistoric” than pottery bowls. Sassaman (2006) examined the radiocarbon date record for the soapstone bowl industry and he estimated the range and median date for soapstone bowl manufacture.

Perforated Slabs

Soapstone perforated slab distributions in Georgia are focused in the Savannah, Ogeechee and Altamaha river systems. While these artifacts do occur in the Flint River (and possibly Chattahoochee River) system, they are exceedingly rare (Figure 73). This artifact category has not been documented in the Coosa River watershed, which includes a portion of northwestern Georgia.
Soapstone atl-atl weights, also termed bannerstones, distributions in Georgia have not been studied in detail. This artifact category is generally rare throughout the state, but widespread. Atl-atl weights date from the Middle Archaic through Early Woodland periods. Winged atl-atl weights are characteristic of the Late Archaic and Terminal Archaic periods.

Fourteen sites in the Oconee Valley sample contain soapstone atl-atl weight fragments. Sites 9GE244, 9GE313, 9GE393, 9GE511, 9GE599, 9GE789, 9GE818, 9MG139, 9MG 199, 9PM199, 9PM233, 9PM351, 9PM429, 9PM466 yielded soapstone atl-atl weight fragments (Elliott 1981).

The Savannah Valley sample displays several examples of soapstone winged atlatl weight production sites in Richmond and Columbia counties, Georgia. At Lovers Lane, Site 9RI86, Elliott and his colleagues unearthed debris from a soapstone atlatl workshop. Winged bannerstones were the intended product at this workshop. The Steiner collection includes several examples of partially completed soapstone atlatl weights from sites near the confluence of Kiokee Creek and the Savannah River. Atl-atl manufacture from soapstone also is evidenced at the Moody site in Edgefield County, South Carolina (Beard and Moody 1979; Moody et al. 1985; Sassaman and
Randall 2007). In western Georgia, Sheldon (1976) suggested evidence for the manufacture of soapstone atl-atl weights at the Burns Rock Quarry in Carroll County, Georgia, although this industry remains to be fully proven.

Smoking Pipes

Soapstone smoking pipe distributions in Georgia have not been studied in detail. Soapstone pipes have a wide timespan reaching from the Late Archaic through Historic Aboriginal periods. This category is broad and includes a range from simple tubular pipes and large elbow pipes in the Late Archaic period to large effigy pipes made in the Woodland period to small elbow pipes made by the Creeks and Cherokees that mimicked European clay pipes (Witthoft 1949). Figure 74 is an soapstone effigy pipe recovered from the Hollywood Mounds in Richmond County, Georgia.

Soapstone pipe evidence in the Savannah Valley includes both Archaic pipes as well as Woodland, Mississippian and Historic Cherokee pipes. The Steiner collection includes examples of incomplete soapstone pipes from sites near the confluence of Kiokee Creek and the Savannah River in Columbia County, Georgia. One possible pipe quarry may have existed in Elbert County but it was destroyed during the relocation of a railroad across Lake Russell.

Evidence for soapstone smoking pipes is almost nonexistent in the Oconee Valley sample. No examples were recovered from the Lake Oconee project (Elliott 1981).

![Figure 74. Soapstone Effigy Pipe Excavated by Reynolds from Hollywood Mounds, Richmond County.](image-url)
Ornaments

The distribution of soapstone ornaments and other miscellaneous soapstone objects has not been studied in detail. Soapstone bar gorgets are likely associated with the Woodland period. Some of these objects, from the Lake Oconee project for example, are fashioned from older Archaic stone bowl sherds (Elliott 1981). The Steiner collection contains a number of gorgets and a few examples of soapstone beads from the Savannah River watershed.

Historic Use

Historic use of soapstone in Georgia at the local level is evidenced at or near several soapstone outcrops. The stone was used for tombstones, chimneys, foundation stones and chicken troughs (Hopkins 1914:299). Prehistoric soapstone bowls were a curiosity to Euro-american settlers in Georgia and many bowls were collected and taken to their farms. Soapstone was also used in Georgia for griddles, bedwarmers, stoves and laboratory tables, although no documentary evidence was located to suggest that Georgia outcrops were the source for these items. Talc mining in the nineteenth and twentieth century undoubtedly destroyed many prehistoric soapstone quarry sites in Georgia. Hopkins (1914) summarizes this quarrying activity.

Future Research

The Need for Soapstone Survey

Soapstone outcrops significantly affected Late Middle Archaic through Terminal Archaic period settlement in the Georgia piedmont. Archaeological sites from the Late Archaic are common in Georgia (Figure 75).
Sourcing Soapstone in Georgia

In the 1970s archaeologists and chemists were optimistic about the potential for sourcing soapstone using scientific means. A series of papers summarized this work, which applied Neutron Activation Analysis (NAA) in the characterization of rare earth elements in soapstone, which researchers thought to be geographically sensitive (Holland et al. n.d.; Allen et al. 1975, 1978; Allen and Pennell 1978; Luckenbach 1974a-b; Luckenbach et al. 1974, 1975, 1975; Becker 1976a-c, 1978a-b, 1980).

In the early 1980s, the author directed a pilot study of NAA in sourcing soapstone deposits and aboriginal artifacts from several locations in the Savannah River watershed of Georgia (Elliott 1984, in Wood et al. 1984:Appendix A). Samples from outcrops in Columbia and Elbert counties were included in the pilot study. The USGS sponsored studies on the composition of Georgia soapstone and other ultramafics also in the 1980s. Similar research also has been conducted at the University of Georgia. This work focused on the soapstone deposits of Soapstone Ridge near Atlanta, Georgia (Higgins et al. 1980, 1986, 1988).

Subsequent research by geologists with the University of Georgia have revisited the topic of soapstone in Georgia. Aleta Turner and Swanson of UGA studied soapstone samples from 9DA248, 9DA17, and 9DA139. They compared samples from the Blue Rock Quarry (BRQ, 31Yc7), located in the Eastern Blue Ridge of Yancey County, North Carolina and Charlotte Woods.
Quarry (9DA248) of Soapstone Ridge, in DeKalb County, Georgia, were two important sources of bowl material. Although amphibole-poor soapstone was quarried at Blue Rock Quarry, artifacts from Charlotte Woods were made of a very amphibolitic “soapstone.” A stepwise discriminant analysis performed on the two quarries’ mineralogies produced statistically significant coefficients (p<0.0005). Preliminary analysis of bowls and scars from other Soapstone Ridge quarries (9DA139, 9DA17) indicates that their mineralogies are amphibole-rich like that of Charlotte Woods. Rock samples from 9DA17, however, indicate a wider suite of lithologies present than were quarried. In addition to the amphibolitic soapstone, lithologies in their samples include amphibolite and amphibole-chlorite rock (Turner 1999; Turner and Swanson 1998; Turner et al. 1998).

Chaumba and Swanson 2008 wrote: “The petrotectonic significance of basic and ultrabasic rocks in the reconstruction of the geologic history of an orogen is well known. An inherent assumption in such studies is that the bulk-rock geochemistry represents original igneous compositions and can therefore be used to infer the original protolith of these rocks. To test this idea we examined rocks of the Soapstone Ridge Complex in SE Atlanta, Georgia using the extensive geochemical data base of Higgins et al. (1988) supplemented with our own new data.”

“The Soapstone Ridge Complex (SSR) is one of the largest occurrences of basic rocks in the southern Appalachian Orogen. The rocks are mostly chlorite amphibole schists with minor amounts of talc and CrFeTi oxides. Epidote amphibolites form a small part of the SSR. The SSR represents structurally the highest thrust sheet in this part of the Georgia Piedmont. Despite the metamorphic mineral assemblages, workers continue to apply igneous terminology to describe these rocks.”

“Bulk compositions of SSR rocks correspond to mafic and intermediate igneous compositions (45 to 58 anhydrous wt. % SiO2). No systematic variation trend is found among the major components. Normative mineralogy is rich in pyroxene, with small to moderate amounts of plagioclase. Quartz and olivine are present in low, variable amounts. Alkali content is low, resulting in normative corundum in over half of the analyses. Rare-earth element (REE) plots from the Soapstone Ridge show enrichment in light REE, but display scattered, crossing patterns.”

“If one uses igneous terminology, SSR rocks are either gabbros and pyroxenites or basalts and andesites, based on normative mineralogy. Ultramafic rocks are not part of the SSR. Comparison to a variety of settings does not produce a match for the SSR. Normative corundum and crossing patterns of REE are related to alteration of the SSR rocks and such altered rocks do not represent their igneous protoliths.”

Chaumba (2009a) described the Soapstone Ridge complex as, “a large metamorphosed body located in the Tugaloo terrane in the southern Appalachians, just southeast of Atlanta, Georgia. The SSR [Soapstone Ridge complex] is comprised of dominantly metapyroxenites, chlorite schists, talc chlorite schists, and minor metaultramafic rocks and diablastites.”

Radko (2011) expanded on the research by Turner and examined the mineral chemistry of soapstone samples from the Live Oak and Charlotte Woods quarries on Soapstone Ridge, as well as the Pacolet quarry in South Carolina.
Chaumba (2009b) also has studied the ultramafic rocks of eastern Georgia. While his study did not discuss any archaeological aspects of these outcrops, his mineral study provides useful information.

Summary

Our knowledge of prehistoric exploitation of soapstone in Georgia was summarized in this document. This included a review of known aboriginal quarries and unexplored geological outcrops of soapstone in Georgia. The author has identified several dozen outcrops that should be explored for evidence of aboriginal quarrying. Information contained in this document should provide a great starting point for future archaeological investigations on soapstone in Georgia.

References Cited

Adair, G.W.

Allen, R. O., K. K. Allen, C. G. Holland, and W. W. Fitzhugh

Allen, R. O., A. H. Luckenbach, and C. G. Holland

Allen, Ralph O., and S. Edilh Pennell

Alterman, Michael L.

Anderson, David G.

Anderson, David G., and J. W. Joseph

Anderson, David G., C. E. Cantley, and J. Schuldenrein

Anderson, David G., and Joseph Schuldenrein, assemblers

Anderson, David G., Christopher Amer, and Rita F. Elliott

Anonymous
1961 A Preliminary Report of the Stalling’s Island Site. Ms. on file, Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Atlanta Constitution

1897 Fibrous Talc. An Atlanta Company is Operating a Mine in the Cohutta Mountains. *Atlanta Constitution*, June 17, 1897, p.20.

Battle, D. O.

Beard, Bryan S., and W. C. Moody

Becker, Marshall Joseph

1978b Reconstructing Minoan Trade Routes: Preliminary Application of Instrumental Neutron Activation Analysis to a Study of Steatite and Other Stone Artifacts from Crete. Manuscript on file, The LAMAR Institute, Rincon, Georgia.

Billingsley, Linda

Blanton, Dennis B.

Bloom, J.A., D.T. Elliott, and P.H. Garrow

Bloom, Jon A., D.T. Elliott, P.H. Garrow, and K.A. McRae
1991 Archaeological Data Recovery at the Charlotte Woods Soapstone Quarry (9DA248), DeKalb County, Georgia. Garrow & Associates, Atlanta, Georgia.

Bowen, William R.

Bowles, Oliver

Bruce, Rebecca

Bullen, Ripley P.

Bullen, Ripley P., and H. Bruce Greene

Bushnell, David I.

Caldwell, Joseph R.

1951 Unpublished field notes and photographs, Lake Springs Site, Columbia County, Georgia. On file, Department of Anthropology, University of Georgia, Athens.

Caldwell, Joseph R., and Antonio J. Waring, Jr.

Cambron, James W., and David C. Hulse

Campbell, John Lyle, and William Henry Ruffner

Cantley, Charles E.

Cantley, Charles E., and L.E. Raymer

Carnes-McNaughton, Linda

1981 Fork Creek Mountain. Ms. on file, LAMAR Institute, Savannah, Georgia.

Chamblee, John F.

1996 Settlement Pattern Change at the Fishing Creek Tract, Greene County, Georgia. GASF Report 498, Athens.

Charles, Tommy

Chamblee, John F.
1996 Settlement Pattern Change at the Fishing Creek Tract, Greene County, Georgia. Unpublished M.A. thesis, Department of Anthropology, University of Georgia, Athens.

Chaumba, Jeff B.

Chaumba, Jefferson B., and Brendan Murphy

Chaumba, Jeff B., and S.E. Swanson

Chapman, James David

Cherninsky, Alexander

Chidester, A.H., A.E. Jengle, and L.A. Wright

Claflin, William H., Jr.

Coe, Joffre L.

Colquhoun, Donald J.
1981 *Variation in Sea Level on the South Carolina Coastal Plain*. Department of Geological Sciences, University of South Carolina, Columbia.

Colquitt, Albert H.

Columbus Daily Enquirer
1887 News from Three States, *Columbus Daily Enquirer*, April 30, 1887, p.3.

Cook, R.B.

Cowie, S., and R. F. Elliott

Cressler, Alan
n.d. [Photographs] Soapstone Bowl Site Carrollton Carroll Co. GA.
n.d. [Photograph] Sprayberry Rock, Cobb County, Georgia.

Crusoe, Donald L.

Crusoe, Donald L., and Chester B. DePratter

D'Angelo, James J.

2002b Historical Research and Archaeological Reconnaissance for the Hightower Trail and a Soapstone Site within the Graves Road Park Site, Gwinnett County, Georgia. TRC Garrow Associates, Atlanta, Georgia.

2003 Historical Research and Archaeological Investigations of the Hightower Trail and Soapstone Site for the Graves Road Park Project, Gwinnett County, Georgia. TRC Garrow Associates, Atlanta. GASF Report 6845, Athens.

DeKalb County Planning Department
1976 *Soapstone Ridge: Its Environment and Land Use*. DeKalb County Planning Department, Decatur, Georgia.

Denton, James E.

DePratter, Chester B.
1976 The 1974-1975 Archaeological Survey in the Wallace Reservoir, Greene, Hancock, Morgan, and Putnam Counties, Georgia. Manuscript on file, Department of Anthropology, University of Georgia, Athens.
Dickens, Roy S., Jr.

Dickens, Roy S., Jr., and Gary Barber

Dickens, Roy S., Jr., and Linda F. Carnes

Dickens, Roy S., Jr., L.F. Carnes, and S.W. Grable

Dickens, Roy S., Jr., and J.L. McKinley

Duncan, Charles

Elliott, Daniel T.

1981a *Soapstone Use in the Wallace Reservoir.* Wallace Reservoir Project Contribution 5. Department of Anthropology, University of Georgia, Athens.

1989 Falcon Field and Line Creek: Two Archaic and Woodland Period Sites in West Central Georgia. Southeastern Archaeological Services, Athens, Georgia.

1993 History of Archaeological Investigations of the Savannah River Archaic. LAMAR Institute, Inc., Watkinsville, Georgia.

Elliott, Daniel T., and Dennis B. Blanton

Elliott, Daniel T., and Roy Doyon
1981 Archaeology and Historical Geography of the Savannah River Floodplain near Augusta, Georgia. University of Georgia Laboratory of Archaeology Series Report 22, Athens.

Elliott, Daniel T., Jeffrey L. Holland, Phil Thomason, and Michael Emrick

Elliott, Daniel T., and R. Jefferies
1978 Wallace Upland Survey. Unpublished manuscript on file, Department of Anthropology, University of Georgia, Athens.

Elliott, Daniel T., R. Jerald Ledbetter, and Elizabeth A. Gordon

Elliott, Daniel T., and Lisa D. O'Steen

Elliott, Daniel T., and Kenneth E. Sassaman
Espenshade, Christopher T.

Fairbanks, Charles H.
1940 Fairbanks’ Notes. Notes accompanying Accession 130, National Park Service, Southeast Archaeological Center, Tallahassee, Florida.

Ferguson, Leland G., and Randolph J. Widmer
1976 Archaeological Examination of a Transect Through the Middle Savannah River Valley, The Bobby Jones Expressway. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Research Manuscript Series 89.

Ferguson, Terry A.

Fernandez-Sardina, Ricardo

Fish, Paul R.
1978 Site 9GE263 Site Form, GASF, Athens.

Fish, Paul R., and T. H. Gresham

Ford, James A.

Freer, Jennifer Anne

Fryman, Robert, T.G. Lilly, Jr. and T. Britt
1993 Phase I Cultural Resources Survey of the Proposed Banks County Landfill Site on Carlan Creek, Banks County, Georgia. Garrow & Associates, Atlanta, Georgia.

Furcron, A.S., K.H. Tague, and J.L. Calver

Gaines, Joseph J.

Gardner, M.
1970 Specimen Catalog, Stallings Island. On file, Institute for Archeology and Anthropology, University of South Carolina, Columbia.
Garrow, Patrick H.

Garrow, Patrick H., editor

Georgia Geological Survey

Georgia Historical Commission
1953 Soapstone Boulder. [Historical Marker]. Georgia Historical Commission, Atlanta, Georgia.

Goodyear, A. C., III, J. H. House, and N. W. Ackerly

Gresham, Thomas H.

Griffin, James B., editor

Hally, David J.
1982 Archaeological Investigations at Site 9GE145, Wallace Reservoir, Georgia. University of Georgia, Laboratory of Archaeology Series, Report Number 54.

Hally, David J. and J. Rudolph
1982a Archaeological Investigations at the Site 9PM212. University of Georgia, Laboratory of Archaeology Series Report Number 20.

Hanson, Glen T.

Hemmings, Thomas
Higgins, Michael W., S.M. Pickering, Jr. and R.I. Atkins

Hillyard, M.B.
1897 The New South. The Manufacturers’ Record Co., Baltimore, Maryland.

Historic Resources Survey
n.d. Historic Resources Survey, Carroll County. Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

1976 Historic Resources Survey, White County. Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

1977 Historic Resources Survey, Union County. Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

Holland, C.G., S.E. Pennell, and R.O. Allen
n.d. Geographical Distribution of Soapstone Artifacts from Twenty-one Aboriginal Quarries in the Eastern United States. Manuscript on file, The LAMAR Institute, Savannah, Georgia.

Holmes, William H.

Hopkins, Oliver B.

House, John H., and David L. Ballenger

Howard, James D, Chester B. DePratter, and Robert W. Frey

Hutto, Brooks

Johnson, Kenneth
Jones, Charles C., Jr.

Jordan, William R.

Joseph, J. W.

Kelly, Arthur R.

King, Francis P.

King, James A.

Kunesh, Thomas P.

Langford, Jim
1997 Site 9PA65 Site Form. GASF, Athens.

Larson, Lewis H., and Daniel L. Simpkins

Lawton, D.E., and others

Ledbetter, R. Jerald

2006 The Barrow Creek Clearcut Project, Oglethorpe County, Georgia. GASF Report 766, Athens.

LePionka, Larry

1981 The Second Refuge Site: Sea Level, Paleogeography, and Cultural Attributes. In Variation in Sea Level on the South Carolina Coastal Plain, edited by Donald J. Colquhoun, pp. 73-84. Department of Geological Sciences, University of South Carolina, Columbia.

LePionka, Larry, editor
1983 The Second Refuge Site: Location 22 (38JA61), Savannah National Wildlife Refuge, Jasper County, South Carolina. Department of Sociology, University of South Carolina, Beaufort. Submitted to U.S. Fish and Wildlife Services, Savannah, Georgia.

LePionka, Larry.

Lewis, George S.

Lewis, Thomas M. N., and Madeline Kneberg Lewis
2002 Archaeological Survey of the 125 Acre Scull Shoals Clearcut, Greene County, Georgia. UGA Report 2890, Athens.

Loubser, Johannes H. N.

Loubser, Johannes H. N., and D. Frink

Loubser, Johannes, T. Hudson and T. Greiner
2002 The Recent Recording of Petroglyphs in Georgia. The Profile 117:3-5.

Lowman, D.W., and S. L. Wheatley
Luckenbach, Alvin H.

Luckenbach, Alvin H., Ralph O. Allen, and C. G. Holland
1974 The Use of Rare Earth Element Concentration in Neutron Activation Analysis of Soapstone. Newsletter of Lithic Technology 3(3):41.

Luckenbach, A.H., C.G. Holland, and R.O. Allen

McCallie, S.W.

McConnell, Keith I., and Charlotte E. Abrams

McMichael, E.V., and J.H. Kellar
1959 Archaeological Salvage in the Oliver Basin. GASF, Athens.

Macon Weekly Telegraph

Marietta Journal

Maynard, Thomas P., J.M. Mallory, and R.T. Stull

Michie, James L.
1969 Excavations at Tom’s (Thom’s) Creek. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, The Notebook 1(1):2-16.

Midgette, Gordon M.

1968b A Preliminary Appraisal of Archaeological, Historical, and Related Natural Science Resources in the Proposed Curry Creek Dam Reservoir Basin. GASF Report 22, Athens.

Miller, Carl

Mooney, James 1890 Unpublished Field Notes Track Rock. National Anthropological Archives, Smithsonian Institution, Suitland, Maryland.

Myers 1940 Myers Notes. Notes accompanying Accession 130, National Park Service, Southeast Archaeological Center, Tallahassee, Florida.

O’Steen, Lisa D., M.B. Reed, E. Jorgensen, and J.W. Joseph

Paglione, Teresa

2002 Site 9ST249 Site Form. GASF, Athens.

Peck, Rodney M.
2010 An Eastern Perspective on Archaic Soapstone Bowls and Quarries from Virginia, Georgia and the Carolinas. Peck’s Place Publishing, Kannapolis, North Carolina.

Pennington, Marilyn
1973 Soapstone Ridge National Register Nomination Form. Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

Peterson, Drexel

Phelps, David

Phelps, David, and Rebecca Burgess

Pluckhahn, Thomas J.

Powell, John Wesley

Price, George
2001 Intensive Archaeological Survey for the Perimeter Highway Tract, DeKalb County, Georgia. TRC Garrow Associates, Atlanta, Georgia.

Price, George, and Rita F. Elliott

Price, T. Jeffrey, and Karen G. Wood

Raymer, Leslie E. 1983 Fork Creek Mountain. Ms. on file, LAMAR Institute, Savannah, Georgia.

Richmond and Danville Railroad 1882 Catalogue of Exhibits Made at the International Cotton Exposition, Atlanta, Georgia, 1881. Baughman Brothers, Richmond, Virginia.

Rogers, Anne 1982 An Interpretation of a Late Archaic Period Site in Piedmont Georgia. Wallace Reservoir Project Contribution Number 17, Department of Anthropology, University of Georgia, Athens.

1985 A Preliminary Typological Assessment of MALA Hafted Bifaces from the Pen Point Site, Barnwell County, South Carolina. South Carolina Antiquities 17:1-17.

1991a Economic and Social Contexts of Early Ceramic Vessel Technology in the American Southeast. PhD Dissertation, Department of Anthropology, University of Massachusetts, Amherst, University Microfilms, Ann Arbor.

1991b Interim Report on Archaeological Testing at the Midden Point Site (9Bk113), Burke County, Georgia. Ms. on file, Savannah River Archaeological Research Program, South Carolina Institute of Archaeology and Anthropology, Aiken, South Carolina.

Sassaman, Kenneth E., and George Lewis 1990 The Heard Robertson Collection. Ms. on file, Savannah River Archaeological Research Project, South Carolina Institute of Archaeology and Anthropology, Aiken, South Carolina.

Sherrill, Donald Gene 1973 Soapstone Ridge, Georgia: a Case Study Exploring the Gray Level Color Image Enhancement Technique as an Environmental Planning Tool. Georgia Institute of Technology, Atlanta.

Simpkins, Daniel L.
1990 A Phase II Archaeological Investigation of the Proposed Mountain Park near Young Harris in Towns County, Georgia. GASF Report 1116, Athens.

Smith, Marvin T.

Smith, Marvin T., and D.J. Hally
1981 Archaeological Investigations at Site 9MG90, Wallace Reservoir, Georgia. Wallace Reservoir Project Contribution Number 8, Department of Anthropology, University of Georgia, Athens.

Smith, Philip E.

Smith, Richard L.

Southerlin, B.G.

Stanyard, William F.

Steiner, Roland A.
1892-1905 Unpublished Letters Accompanying Artifact Shipments, Accession Microfilm, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, D.C.

1899 Prehistoric Settlement, Big Kiokee Creek, Columbia County, Georgia. American Association for the Advancement of Science, Proceedings, pp. 379-382.

Stephenson, Matthew E.

Stevens, Obadiah B., and R.F. Wright
1901 Georgia, Historical and Industrial. G.W. Harrison, Atlanta.

Stoltman, James B.

Summey, P.
Taylor, Richard L., and Marion F. Smith, assemblers

The American Engineer

Thomas, Cyrus

Thomas, Larissa A.
2011 Results of Archaeological Reconnaissance at 1200 Mason Dixon Lane in the Soapstone Ridge Historic District, DeKalb County, Georgia. TRC, Atlanta, Georgia.

Tippitt, V. Ann, and William H. Marquardt
1984 *Archaeological Investigations at Gregg Shoals, A Deeply Stratified Site on the Savannah River.* Russell Papers. Interagency Archaeological Services Division, National Park Service, Atlanta, Georgia.

Trinkley, Michael
1975 *Analysis of Ceramics from Fennel Hill, South Carolina.* Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

Truncer, James Joseph

Truncer, J., M.D. Glascock, and H. Neff

Turner, Aleta V.R.
Turner, A.V., S.E. Swanson, and M.F. Roden

Turner, A.V. and S.E. Swanson

Valk, Diana

Van Riper Turner, Aleta

Waddell, Eugene

Waggoner, Jamie C., Jr.
2007 Opening Doors and Blurring Barriers: A Look at Late Archaic Soapstone Exchange and Fiber-Tempered Pottery in the Ocmulgee Big Bend. Presented at the 64th Southeastern Archaeological Conference, Knoxville, Tennessee.

Wagner, John Alfred
1982 The Vegetation of Soap Stone Ridge: A Study of the Fork Creek Mountain Site, DeKalb County Georgia. Unpublished M.A. thesis, Department of Biology, Georgia State University, Atlanta.

Ward, George Gordon

Waring, Antonio J., Jr.

Wauchope, Robert
American Antiquity 31(5, Part 2).

Webb, Robert S.
1993 Data Recovery Excavations at the Hickory Ridge Soapstone Quarry, Site 9Da67. UGA Report 1094, Athens,

Webb, William S.

Weinand, Daniel

Wettstaed, James

Whatley, John, Jr.
1968a Basic Sketch Map of Known and Indicated Indian Paths and Village Sites in Carroll County, Ga. *Carroll County Historical Quarterly* 1(2):58.

Whatley, John S.

Wheaton, Thomas R.

Wheaton, Thomas R., and David Allison

White, George
1849 *Statistics of the State of Georgia*. W. Thorne Williams, Savannah, Georgia.

1854 *Historical Collections of Georgia*. Pudney & Russell, New York.

White, John W.

Whyte, Thomas R.
n.d. The Non-Soapstone Lithic Artifacts from the Fork Creek Mountain Site (9Da18). Ms. on file, LAMAR Institute, Savannah, Georgia.
Williams, Stephen (editor)

Willey, Gordon R.

Willey, Gordon R., and Philip Phillips

Willey, Gordon R., and Jeremy Sabloff

Wise, Robert P.

Witthoft, John G.

Wood, W. Dean, and Dan T. Elliott

Wood, W. Dean, and Charlotte Smith

Wood, W. Dean, Dan T. Elliott, Teresa P. Rudolph, and Dennis B. Blanton

Wynn, Jack T.

Yates, Brian W.