Archaeological Survey and Ground Penetrating Radar Survey on Portions of the Village, St. Simons Island, Georgia

LAMAR Institute Publication Series
Report Number 103

The LAMAR Institute, Inc.
2007
Archaeological Survey and Ground Penetrating Radar Survey on Portions of the Village, St. Simons Island, Georgia

LAMAR Institute Publication Series
Report Number 103

By Daniel T. Elliott and Jason Burns

The LAMAR Institute, Inc.
Savannah, Georgia

2007
Contents

List of Figures ..i
List of Tables ...i
Introduction ..1
Methods ...9
Results and Interpretation ..13
Summary ...20
References Cited ..25
List of Figures

Figure 1. Project Location, 9GN318 (Glynn County 2008) ... 1
Figure 6. Portion of Anonymous 1771 Map (Courtesy of Hargrett Rare Book and Manuscript Library) ... 5
Figure 7. First Lighthouse (Cate 1930:01) ... 6
Figure 8. Second Lighthouse .. 8
Figure 9. Portion of 1920 Sanborn Map ... 9
Figure 10. Shovel Test Locations, 9GN318 (Glynn County 2008) 13
Figure 11. Two Intact Bricks Visible in Shovel Test 9 at 30 cm Depth 17
Figure 12. Condom Lid and Marble, Surface, 9GN318 .. 17
Figure 13. Tobacco Pipe, Shovel Test 1, 9GN318 .. 18
Figure 14. Porcelain Teacup, Shovel Test 2, 9GN318 .. 18
Figure 15. GPR Block A Plan at 80 cm Depth (Grid North is to Top of Page) 18
Figure 16. GPR Block B Plan View at 80 cm Depth (Grid North is Oriented to the Top of the Page) ... 19
Figure 17. GPR Block B Plan at 1.2 m Depth ... 20
Figure 18. GPR Blocks A and B Shown as Overlays on Modern Aerial Map (Google Earth 2008) ... 21
Figure 19. 9GN318 Study Area Facing South, July 2005 (Photo by Sammy Smith) 23

List of Tables

Table 1. Artifact Inventory, 9GN318. .. 14
Introduction

Archaeological investigation at a small portion of the St. Simons Island village (9Gn318) in Glynn County, Georgia was provided by the LAMAR Institute, Savannah, Georgia. This work included Ground Penetrating Radar survey of a small sample of a proposed development tract (Block B) and an adjacent parking lot (Block A). Block A is a portion of a large real estate parcel owned by Glynn County, Georgia. Block B is a portion of a real estate parcel that was formerly owned by the U.S. Coast Guard and transferred to the Coastal Georgia Historical Society in 2004. The project location is shown in Figure 1. Fieldwork for this project was conducted on December 5, 2005. These results are detailed in this report. The LAMAR Institute’s survey team was performed by Daniel T. Elliott and Jason Burns, Assistant State Archaeologist, Georgia Department of Natural Resources.

Figure 1. Project Location, 9GN318 (Glynn County 2008).
Background

The village of St. Simons Island is located on St. Simons Island in Glynn County, Georgia, near Brunswick, Georgia. St. Simons Island is one of Georgia’s larger barrier islands and is situated between Sapelo Island to the north and Jekyll Island to the south. The Village is located on the southern tip of St. Simons Island. This general area was known since the early 19th century as Coupers Point (Frobel 1969).

Prehistoric settlement on St. Simons Island dates back to the Archaic period, at least, and the island abounds with archaeological sites that were created by aboriginal peoples.

The earliest historic settlement on St. Simons Island is associated with the Spanish mission period, although this era is only tenuously identified at present.

English settlement on St. Simons Island began in 1736, when General James Edward Oglethorpe founded the fortified settlement of Frederica. The archaeology of Frederica has been extensively studied. A military outpost was also established by Oglethorpe at the southern end of the island, which consisted of a strong fortification, military barracks, and associated village (Arrendondo 1737; Seale 1741; Barefoot 2004) (Figures 2 and 3). The fort was known as Fort St. Simons. It was destroyed in July 1742 during a military engagement between the Georgia colonists and the Spanish forces.

British Engineer John Thomas made a detailed plan drawing of Fort St. Simons in 1740. The caption for his plan stated, “Plan of the Fort proposed for St. Simons Island on the Border of ye freights or Entry of the Haven of Jekyll Sound reduced to the least Compass to contain a Garrison of 300 Men and the Most advanced to ye East as Possible, or towards the Barrs entry, so that the Glacis is terminated at the Marsh which meets on that side” (Thomas 1740).
Thomas’ plan and profile for the proposed fort is shown in Figure 4. Figure 5 shows a portion of Thomas’ map of St. Simons and Jekyll islands and Fort St. Simons is highlighted. Thomas died before returning to implement his plan and it is not known how meticulously the builders adhered to Thomas’ plan.

It is reasonable to assume that General Oglethorpe demanded considerable effort in its construction in the period from its initial construction to July 1742, when the fort was attacked. No other detailed maps or plans of the fort from this period are known. What is known is that as many as 500 British soldiers were garrisoned in a barracks near the fort and that Fort St. Simons was built sufficient to accommodate these troops in times of hostilities. Construction of the fort was completed in April 1740. By July 1742 Fort St. Simons may have closely resembled Thomas’ plan.

Several dissatisfied Georgia colonists, referred to as the “Clamorous Malcontents”, provided this description of the settlement on the south end of St. Simons Island, prior to 1740: “On the sea point, about five miles south-east of the town [Frederica], were three companies of soldiers stationed before the attempt upon St. Augustine; several pretty houses were built by the officers, and many lots set off to the soldiers and entered upon by them; most if not all now desolate” (Tailfer et al. 1872 [1741]:254).

Benjamin Martyn, Secretary for the Georgia Trustees, wrote in 1741 regarding the military barracks on the south end of St. Simons Island, “at the south-east point of the island are barracks for three hundred and thirty men” (Martyn 1872 [1741]:309).
The Spanish invaded St. Simons Island in early July 1742. They crossed at the St. Simons Bar on the morning of July 5 with 36 warships. Soon afterwards they began their naval attack began with a bombardment of Fort St. Simons. This artillery battle between the Spanish fleet, a couple of British ships, and the land batteries lasted for about four hours. Although the Spanish ships held hundreds of large cannons and the British defenses were also strongly defended by cannons, cohorns and mortars, the damage was reportedly minor (Forts Committee 1960:5).

The Spanish fleet sailed past Fort St. Simons, heading for the Frederica River. General Oglethorpe quickly convened a war council and made the decision to abandon Ft. St. Simons and the other batteries on the south end of the island and march the 42nd Regiment to Frederica. Before departing, the soldiers were ordered to, “destroy all the Provisions, Vessells, Artillery & c. at St. Simon’s that they might not fall into the Enemy’s hands”, and General Oglethorpe stayed long enough to insure that, “this was accordingly executed” (Oglethorpe 1873 [1742]:134-135).

Oglethorpe estimated that the Spanish lost an, “abundance of men” in the engagement. The British losses included, “Our Guard Sloop was disabled and sunk one of our Batterys blown up and also some of our men on board Capt. Thomson…”, and an undetermined number of merchant vessels were destroyed by the British at their moorings (Oglethorpe 1873 [1742]:135).

The Spanish came ashore on the evening of July 5 at Gascoine Bluff with about 4,300 troops and immediately established Fort St. Simons as their base of operations. They remained on St. Simons Island until July 12, 1742, when they destroyed the fort and then quickly boarded their ships and sailed for St. Augustine. General Oglethorpe commented on their hasty retreat, “they left behind them Cannon & ca. and those dead of their wounds unburied” (Oglethorpe 1873 [1742]:138).

The Spanish account of the battle included this description of the British defenses on the south end of the island,

“At the entrance into the Harbour, was a Fort made of Sodds or Turf with a Brick Parapet. It was square and contained a Bomb Mortar and five Cohorn Mortars; without it
was a Battery of 3 cannon, which play’d upon the Bar. Two musket-shots from this, was another square Fort with four bastions. The Curtains made of Sodd and strong Timber, a Ditch 3 Fathoms wide and 4 Feet deep; on the Parapet was planted a Row of Thorn Bushes and in the Inside were fix’d a Number of Stakes, to prevent an Enemy’s entering by Surprise. Between these Forts was a Line or Battery of 5 guns, and to the Westward of the Forts an entrenchment in a circular form to fight their small-arms. The town of Gualquini (Fort St. Simon’s), or the aforesaid place of Arms which consisted of 7 Streets of 10 Houses each...” (Gentleman’s Magazine 1742:695, cited in Forts Committee 1960:5-6).

Several contemporary accounts of this military campaign are documented (Sutherland 1743; Nederlansh Gedenkboek 1742; Kimber 1745; Rolt 1749; Candler 1906; Forts Committee 1960:4-6; Wilcox 1913; Oglethorpe 1873 [1742]). Only a sample of these was examined for the present study.

The Revolutionary War affected St. Simons Island in several ways. Militarily, the island was of little consequence. The most significant event was a naval action, in which the Georgia Brigade, commanded by Brigadier General Samuel Elbert, captured two British ships in the Frederica River. No major land action was reported on the island. A 1771 map depicts the south end of St. Simons Island on the eve of the American Revolution, as shown in Figure 6).

During the war a contingent of British troops occupied Fort Frederica. Fort St. Simons, or some other fortification may have been used on the south end of the island, but any such military occupation was poorly documented. The 1771 map suggests that the fort was still functional as late as 1771 (Anonymous 1771). Interestingly, several of these early maps of the island consistently depict a settlement north and east of Fort St. Simons. This settlement, which began as the British barracks for three companies of troops (approximately 250 men), completed in 1738, may have evolved into a more substantial settlement by the late 18th century, which included both military and civilians.

The War of 1812 affected St. Simons Island, although most of the impact was poorly documented. The British invasion of Georgia by Admiral Cockburn and his fleet took place after peace had been declared in Ghent, Belgium. Plantations on St. Simons Island were raided and many slaves were taken off the island.

Figure 2. Portion of Anonymous 1771 Map (Courtesy of Hargrett Rare Book and Manuscript Library).

As early as 1804 the U.S. Congress recognized the need for a lighthouse on the southern end of St. Simons Island (U.S. Congress, Senate 1804). James Couper purchased property in this vicinity in 1800 and he deeded land to the U.S. government for a lighthouse site. Construction on the lighthouse began in 1807 and in 1811 the lighthouse was completed at Coupers Point (McCarthy and Trotter 1998:90-91). Figure
7 shows a view of this lighthouse. The first lighthouse was 75 feet tall and had an octagonal base. This lighthouse was destroyed intentionally in 1862. It was located a short distance south of the current lighthouse.

On March 19, 1861, Georgia Governor Joseph E. Brown wrote to the Confederate Secretary of War L.P. Walker, in which Brown noted, “In January last I ordered an artillery company from Macon to take position on Saint Simon’s Island and guard the entrance of the Brunswick Harbor, to keep out pirates, &c. This company is still at Fort Brown, on the island. They now desire to be relieved” (OR 1898: 136).

The Confederate armaments on St. Simons Island were described by Lieutenant Colonel Gill, C.S.A. on November 27, 1861,

“St. Simons batteries have one X-inch columbiad; one VIII-inch columbiad (in process of mounting); two 42-pounder guns; five 32-pounder guns. The guns and carriages work well, except the X-inch columbiad, which bears too heavily on the pintle bolster. This was directed to be remedied by cutting away a small part of the chassis. The battery is supplied with implements; each gun has about 75 rounds of shot and shell, with the ammunition. But as the guns are to be distributed in several batteries, I conceive it proper to order additional stores” (ORN 1901:830).

George W. Davis described the Confederate defenses on the Georgia coast, based on his observations prior to October 18, 1861:

“The defenses of Brunswick Harbour are of the same character as Doboy, 5 guns of the same caliber, manned by 150 men, commanded by Captain Dent. The battery is situated a few yards east of the light-house. The light-house, also the one at Doboy, will be used as a magazine” (ORN 1897:321).

The battery that Davis referred to was Fort Brown.

Isaac Tattnall, an escaped slave and coastal pilot from Brunswick, Georgia, provided a statement to the U.S. Naval blockading fleet.
on December 6, 1861 regarding the Confederate defenses on St. Simons Island. He stated that, “they have five batteries on St. Simon’s. besides which they have two batteries on the inner point of Jekyll Island; about three guns in each battery; some are columbiads, and they have one rifle cannon, casemates of palmetto, covered with railroad iron and iron shutters. About 1,500 men on St. Simon’s Island and 500 on Jekyll Island”. Tatnall also noted that the Confederates had, “Been getting guns from Virginia all summer” (ORN 1901:487).

General Robert E. Lee, C.S.A., wrote to Georgia Governor Brown on February 10, 1862 concerning the removal of the coastal defenses, including those on St. Simons Island:

“I have had the honor to receive your letter of the 8th instant in reference to the withdrawal of the batteries from Saint Simon's and Jekyll Island. No one can regret the apparent necessity of such a measure more than I do, and so great is my repugnance to yield any point of our territory to our enemies, that I have endeavored from the time of my arrival to give strength to the defenses of Brunswick. I find it impossible to obtain guns to secure it as I desire, and now everything is required to fortify this city. I have therefore given General Mercer discretionary authority to withdraw the troops and guns from the island to the main [land], should he, upon a reconsideration of the subject, hold to his opinion as to the inability of the batteries to contend with the enemy’s fleet.”

“I have sent Major Edward C. Anderson to assist in removing the guns, &c., and as soon as I know his determination will inform you. With the exception of the fact of opening another harbor on the coast to the enemy and receding from a point we have occupied, I do not know that any material interest is sacrificed. As the inhabitants of the island and of Brunswick have removed their families and property, there is no trade or commerce with Brunswick, and no immediate back country to be injuriously affected” (ORN 1882:379).

Eight days later (February 18) General Lee wrote again to Governor Brown advising him, “I have the honor to report the information of your excellency that the guns have been removed from the islands of Saint Simon's and Jekyll, and the troops withdrawn to the main-land; the former are in process of transportation to this city, and the latter ordered to take a position to command the railroad and to protect the back country” (ORN 1882:391).

By February 24, 1862, Commander Blair, C.S. Navy lamented that the Confederates had removed the heavy ordnance from the batteries on St. Simons Island (ORN 1901:840). By early March 1862, the Confederates had completely evacuated Brunswick and St. Simons Island. Brigadier General Thomas W. Sherman wrote to Flag Officer Dupont regarding this situation, “Brunswick was evacuated on the 15th [January 1872], and as they brought to Savannah some twenty-odd large guns, no doubt but the forts at St. Simon’s are abandoned too”, and Sherman added, “I would like to occupy St. Simon’s and Brunswick with a small force” (ORN 1901:571).

On March 9, 1862 Lieutenant Commander G. B. Balch, U.S. Navy was sent with three armed boats of seamen from the U.S.S. Pocahontas, “to take possession of the batteries on St. Simon’s Island” (ORN 1901:606). Balch found, “On St. Simon’s Island were two batteries consisting of strong earthworks and so arranged as to
command the approach to St. Simon’s Sound. There were twelve embrasures and numerous well constructed magazines. No guns were mounted, but a X-inch solid shot found near indicated the caliber of some of them” (ORN 1901:606). Balch’s party learned that the Confederates had abandoned the island and Balch’s troops also left St. Simons Island after a very brief examination (probably within hours) and occupied Brunswick by March 19.

Flag-Officer Dupont wrote, “The lenses belonging to the light house at St. Andrew’s and the light-house at St. Simon’s (the latter building having been destroyed by the rebels) could not, after careful search, be discovered” (ORN 1901:606). DuPont’s report places the destruction of the lighthouse on St. Simons Island prior to March 9, 1862.

Commander S.W. Godon of the U.S.S. Mohican made a thorough reconnaissance of St. Simons Island in mid-March. Godon’s inspection revealed the island to be almost completely abandoned by whites and enslaved African-Americans. The combined U.S. Army and Navy forces who had invaded St. Simons Sound in March 1862 did not remain long. Just prior to their departure, the U.S. naval squadron established a “little colony of contrabands” (former enslaved people) on St. Simons Island on March 31, 1862 and Balch issued these men, “some old muskets” (fewer than 8 flint-lock muskets) by the U.S. Navy (ORN 1901:688). By April 18, 1862 the colony had grown to 89 people, which included 60 men, 16 women, and 13 children (ORN 1901:756).

Construction of a second lighthouse at Coupers Point began in 1868. In 1872, this lighthouse was completed. It was located a short distance north of the first lighthouse.

Figure 8 shows an architectural plan for the lighthouse and associated keeper’s house. A small building, located south of the lighthouse, was built in 1890 to house kerosene for the lighthouse. The St. Simons Lighthouse and Keeper’s House complex was listed in the National Register of Historic Places in 1972. This lighthouse remains standing today and is operated as a tourist destination. The Keeper’s House is used as an administration building and house museum.

Figure 4. Second Lighthouse.

The Late 19th century saw the development of piers and several hotels at the St. Simons Village. Military use of the area continued, however, as evidenced by an 1889 newspaper article regarding a Georgia militia encampment and drill grounds, “The ground selected is in a beautiful ten-acre lot about half in live oak woods and half in Bermuda sod, situated within three minutes walk from the pier. The competitive drill ground is on the beach” (Macon Telegraph 1889).
A review of Sanborn fire insurance maps of Glynn County yielded a 1920 map of the area showing buildings and streets. A portion of this map showing the study area is shown in Figure 9. Three small wood frame buildings are indicated in the vicinity of our study block B. The lighthouse, keeper’s house, and oil house also are shown on the 1920 map but these structures are all located south of the study areas (Sanborn Map Company 1920).

In the early 1960s storms eroded a large portion of the southern tip of St. Simons Island. Fill dirt was brought in to restore missing sections. This construction episode is an important event to be considered in studying the archaeology of this vicinity.

Only one previous archaeological study was identified in the vicinity of the present survey. That was an excavation at the location of the original lighthouse (ca. 1811), which was positioned on the ocean side from the existing lighthouse. These excavations were conducted under the authority of then State Archaeologist, Lewis H. Larson, Jr. Larson dispatched a Florida State University graduate student to direct the project. Larson submitted a preliminary two page report and an incomplete artifact inventory from this study but no research report has been located (Larson 1972:1-2, 1973:1-2). Indeed, the lighthouse site was not even recorded in the official Georgia site files, prior to the present study. The site was recorded for the present study as 9GN318. Larson’s crew excavated an area approximately 10 feet by 20 feet to a depth of about 30 inches. This excavation was placed on a low mound south of the existing lighthouse. While a site grid was created for this excavation, no site plan map was located and their excavation grid can only be approximately relocated. Perhaps the best evidence for its location is a photograph of the excavation in progress, reproduced by Morris (2002:46). Their archaeological excavations revealed an octagonal base of the lighthouse, composed of tabby and tabby block veneer coated with plaster, which was six feet thick. Larson tentatively concluded that this represented the 1808 lighthouse construction. These excavations were well removed from the present study locale, although the two studies are considered parts of the same archaeological site.

Nineteenth century plantation archaeology on St. Simons Island was the focus of many years of research in the 1970s by the University of Florida, Department of Anthropology. Those investigations focused on two plantations on the northern end of St. Simons Island and did not address any of the archaeological resources in the St. Simons Village and lighthouse vicinity.

Methods

Archaeological Survey

The archaeological survey consisted of the excavation of nine 50 cm by 50 cm shovel tests, eight of which were spaced at 20 meter intervals across the proposed development tract and the ninth was situated on the basis...
of the archaeologist’s judgment to investigate a historic artifact concentration. The study area measured approximately 45 meters by 45 meters. The soil from these shovel tests was screened through ¼ inch hardware cloth and the resulting contents were bagged for laboratory analysis. Grid North was established at 35 degrees east of Magnetic North, which is the approximate orientation of the St. Simons urban street system (or perpendicular to the shoreline).

Ground Penetrating Radar

The GPR device uses high frequency electromagnetic waves to acquire subsurface data. The device uses a transmitter antenna and closely spaced receiver antenna to detect changes in electromagnetic properties beneath them. The antennas are suspended just above the ground surface and the antennas are shielded to eliminate interference from sources other than directly beneath the device. The transmitting antenna emits a series of electromagnetic waves, which are distorted by differences in soil conductivity, dielectric permittivity, and magnetic permeability. The receiving antenna records the reflected waves for a specified length of time (in nanoseconds, or ns). The approximate depth of an object can be estimated with GPR, by adjusting for electromagnetic propagation conditions.

The GPR sample blocks in this study area were composed of a series of parallel transects, or traverses, which yielded a two-dimensional cross-section or profile of the radar data. These samples are called radargrams. This two-dimensional image is constructed from a sequence of thousands of individual radar traces. A succession of radar traces bouncing off a large buried object will produce a hyperbola, when viewed graphically in profile. Multiple large objects that are in close proximity may produce multiple, overlapping hyperbolas, which are more difficult to interpret. For example, an isolated historic grave may produce a clear signal, represented by a well-defined hyperbola. A cluster of graves, however, may produce a more garbled signal that is less apparent.

The GPR signals that are captured by the receiving antenna are recorded in an array of numerals, which can be converted to gray scale (or color) pixel values. The radargrams are essentially a vertical map of the radar reflection off objects and other soil anomalies. It is not an actual map of the objects. The radargram is produced in real time and is viewable on a laptop computer monitor, mounted on the GPR cart.

GPR has been successfully used for archaeological and forensic anthropological applications to locate relatively shallow features, although the technique also can probe deeply into the ground. The machine is adjusted to best probe to the depth of interest by the use of different frequency range antennas. Higher frequency antennas are more useful at shallow depths, which is most often the case in archaeology. Also, the longer the receiving antenna is set to receive GPR signals (measured in nanoseconds), the deeper the search.

The effectiveness of GPR in various environments on the North American continent is widely variable and depends on soil conductivity, metallic content, and other pedo-chemical factors. Generally, Georgia’s coastal soils have moderately good properties for its application.

Ground penetrating radar signals cannot penetrate large metal objects and the signals are also significantly affected by the presence of salt water. Although radar does not penetrate metal objects, it does generate
a distinctive signal that is usually recognizable, particularly for larger metal objects, such as a cannon or man-hole cover. The signal beneath these objects is often canceled out, which results in a pattern of horizontal lines on the radargram. For smaller objects, such as a scatter of nails, the signal may ricochet from the objects and produce a confusing signal. Rebar-reinforced concrete, as another example, generates an unmistakable radar pattern of rippled lines on the radargram. Conyers notes: “Ground-penetrating radar works best in sandy and silty soils and sediments that are not saturated with water. The method does not work at all in areas where soils are saturated with salt water because this media is electrically conductive and ‘conducts away’ the radar energy before it can be reflected in the ground” (Conyers 2002).

GPR has been used to a limited extent on archaeological sites in Georgia yielding mixed results. Thomas and his colleagues employed GPR technology in his study of the Guale Spanish mission on St. Catherines Island, Georgia in the early 1980s (Royce Hayes personal communication May 31, 2006). Recently, the LAMAR Institute team conducted GPR survey at St. Catherines Island. In the period since the previous GPR work, advances in software imaging have substantially increased the value of this technology in identifying subsurface features.

Elliott has conducted several GPR studies of 18th and 19th century archaeological sites in coastal Georgia. The first study was at the New Ebenezer town site in Effingham County, Georgia (Elliott 2003a). The results of the GPR work at New Ebenezer were quite exciting and included the delineation of a large portion of a British redoubt palisade ditch and the discovery of several dozen previously unidentified human graves (both within and beyond the known limits of the Jerusalem Lutheran Church cemetery). The Ebenezer work was followed by a GPR survey of the colonial-era Horton House site (and DuBignon Cemetery) on Jekyll Island in Glynn County, Georgia (Rita Elliott et al. 2002).

More recently, GPR survey was conducted by Elliott and his colleagues, at Fort Morris and Sunbury Cemetery (Liberty County), Woodbine Plantation cemetery (Camden County), the Gould-Bethel Cemetery (Chatham County), and Fort St. Andrews on Cumberland Island in Camden County. All of these GPR studies yielded very satisfactory results (Elliott 2003b; 2004; 2006a, b). The results of these studies indicate that GPR technology is well suited for archaeological survey on Georgia’s barrier islands and coastal strand.

The equipment used for this study consisted of a RAMAC/X3M Integrated Radar Control Unit, mounted on a wheeled-cart and linked to a RAMAC monitor. A 500 megahertz (MHz) shielded antenna was used for the data gathering. MALÅ GeoScience’s Ground Vision (Version 1.4.5) software was used to acquire and record the radar data (MALÅ GeoScience USA 2006a). The radar information was displayed as a series of radargrams. Easy 3D software (Version 1.3.3), which was developed by MALÅ GeoScience (2006b), was used in post-processing the radar data and 3-D imaging. This entailed merging the data from the series of radargrams for each block. Once this was accomplished, horizontal slices of the data were examined for important anomalies and patterns of anomalies, which were likely of cultural relevance. These data were displayed as aerial plan maps of the sample areas at varying depths below ground surface. These horizontal views, or
time-slices, display the radar information at a set time depth in nanoseconds. Time-depth can be roughly equated to depth below ground. This equivalency relationship can be calculated using a mathematical formula. An estimated soil velocity of 55 (an approximate value for wet sand) was used to generate the GPR maps in this report.

The GPR data from the present study was further processed with more robust imaging software, which was developed by Dean Goodman and called GPR-Slice (Version 5.0). Goodman’s GPR-Slice program is recognized as the world leader in GPR imaging (Goodman 2006).

Various adjustments to the GPR equipment were made in the field during the data collection phase. The time window that was selected allowed data gathering to focus on the upper 1.5 meters of soil, which was the zone most likely to yield archaeological deposits. Additional filters were used to refine the radar information during post-processing. These include adjustments to the gain. These alterations to the data are reversible, however, and do not affect the original data that was collected. This same combination of GPR equipment and radar imaging software was used previously in coastal Georgia with very satisfactory results (Elliott 2003a, 2003b; Rita Elliott et al. 2002).

Upon arrival at the site, the RAMAC X3M Radar Unit was set up for the operation and calibrated. Several trial runs were made on parts of the site to test machine’s effectiveness in the site’s soils. GPR data from two sample blocks were collected. These were designated Blocks A and B.

Block A was located in a paved parking lot west of the proposed development tract. This property is owned by Glynn County. The eastern portion of the parking lot contained many parked vehicles, so it was excluded from the sample. GPR Block A measured 46 meters by 10 meters.

Machinery settings included the following:

Block A
- Time Window: 75 ns
- Number of stacks: 4
- Number of samples: 512
- Sampling Frequency: 6797.126 MHz
- Antenna: 500 MHz shielded
- Radargram orientation: North-Northeast 35 degrees for odd and 215 degrees on even radargrams
- Radargram progress: West to East
- Radargram spacing: 50 cm
- Radargram length: 46 m
- Number of radargrams: 20
- Total survey length: 920 m
- Datum location: Southwest corner, UTM NAD27 Z17 E462432 N3444343

Block B was located on the western portion of the proposed development tract where the proposed building’s footprint was situated. This tract is owned by the Coastal Georgia Historical Society. GPR Block B measured 36 meters by 42 meters. The area of Block B was mostly open ground. A brick post office building had been recently demolished and removed from the property.

Block B
- Time Window: 75 ns
- Number of Stacks: 4
- Number of Samples: 512
- Sampling Frequency: 6797.126 MHz
- Antenna: 500 MHz shielded
- Radargram orientation: North-Northeast 35 degrees for odd and 215 degrees on even radargrams
- Radargram progress: West to East
- Radargram spacing: 50 cm
- Radargram length: 36 m
- Number of radargrams: 84
Total survey length: 3,024 m
Datum Location: iron property pin on southwestern corner of tract and GPR Block

Curation
Artifacts, notes and other records from this project were deposited at the Georgia Museum of Natural History, Department of Anthropology, Athens, Georgia for permanent curation.

Results and Interpretation

The shovel testing of the proposed development lot consisted of nine 50 cm by 50 cm shovel tests. Eight shovel tests were spaced on a grid at 20 m intervals across the property. A ninth shovel test was placed in the center of a historic artifact concentration. Seven of these tests yielded cultural material and two were devoid of cultural remains. Figure 10 shows the approximate locations of the shovel tests superimposed on a recent aerial photograph of the area. Fifty artifacts were collected by the survey and they are inventoried in Table 1.

Figure 6. Shovel Test Locations, 9GN318 (Glynn County 2008.)
Table 1. Artifact Inventory, 9GN318.

<table>
<thead>
<tr>
<th>Lot</th>
<th>Location</th>
<th>North</th>
<th>East</th>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shovel Test 1</td>
<td>500</td>
<td>500</td>
<td>6</td>
<td>Undecorated ball clay pipe bowl fragments (all with cross mends)</td>
</tr>
<tr>
<td>1</td>
<td>Shovel Test 1</td>
<td>500</td>
<td>500</td>
<td>1</td>
<td>Molded ball clay pipe bowl (wheat motif, mends with bowl)</td>
</tr>
<tr>
<td>1</td>
<td>Shovel Test 1</td>
<td>500</td>
<td>500</td>
<td>1</td>
<td>Tobacco pipe stem and bowl with heel (mends with stem and bowl)</td>
</tr>
<tr>
<td>1</td>
<td>Shovel Test 1</td>
<td>500</td>
<td>500</td>
<td>1</td>
<td>Tobacco pipe stem (mends with stem/bowl)</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>6</td>
<td>Blue transfer printed porcelain teacup sherds (all mend)</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>2</td>
<td>Unidentified stamped sheet brass discs, undecorated</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Bone brush handle, small</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Plain white ironstone cup handle</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Plain white ironstone body</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>"Champion X" spark plug</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Iron hoe</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Iron/steel varmit spring trap</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Olive shell, burned</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Black hard rubber tube</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Fishing rod joint, stamped sheet metal</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Brass spoon handle</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Chert biface, crude</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>4</td>
<td>Chert shatter, large</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>White metal buckle, undecorated, possible military</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Iron hasp</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Electrical contact part, brass and steel</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Shotgun shell, unfired, "REM-UMC No. 12 Nitro Club"</td>
</tr>
<tr>
<td>2</td>
<td>Shovel Test 2</td>
<td>520</td>
<td>500</td>
<td>1</td>
<td>Bullet</td>
</tr>
<tr>
<td>3</td>
<td>Shovel Test 3</td>
<td>540</td>
<td>500</td>
<td>1</td>
<td>Crown cap clear glass bottle neck</td>
</tr>
<tr>
<td>3</td>
<td>Shovel Test 3</td>
<td>540</td>
<td>500</td>
<td>1</td>
<td>Albany slip stoneware base</td>
</tr>
<tr>
<td>4</td>
<td>Shovel Test 4</td>
<td>500</td>
<td>520</td>
<td>1</td>
<td>Cut nail</td>
</tr>
<tr>
<td>5</td>
<td>Shovel Test 5</td>
<td>520</td>
<td>520</td>
<td>1</td>
<td>Plain white ironstone cup rim</td>
</tr>
<tr>
<td>5</td>
<td>Shovel Test 5</td>
<td>520</td>
<td>520</td>
<td>1</td>
<td>Panel bottle, light green glass</td>
</tr>
<tr>
<td>5</td>
<td>Shovel Test 5</td>
<td>520</td>
<td>520</td>
<td>1</td>
<td>Light green bottle glass, cylindrical</td>
</tr>
<tr>
<td>5</td>
<td>Shovel Test 5</td>
<td>520</td>
<td>520</td>
<td>1</td>
<td>Clear bottle glass</td>
</tr>
<tr>
<td>6</td>
<td>Shovel Test 9</td>
<td>510</td>
<td>510</td>
<td>1</td>
<td>Plain white ironstone body</td>
</tr>
<tr>
<td>7</td>
<td>General Surface</td>
<td>General</td>
<td>General</td>
<td>1</td>
<td>Blue and white painted clay marble</td>
</tr>
<tr>
<td>7</td>
<td>General Surface</td>
<td>General</td>
<td>General</td>
<td>1</td>
<td>Merry Widow (prophylactic container) aluminum lid</td>
</tr>
</tbody>
</table>

50 TOTAL

Shovel Test 1 yielded several artifacts that likely date to the early to mid-19th century. This was the only location in the study area that yielded artifacts from that early date. Shovel Test 1 was placed in the southeastern corner of the development tract. Its approximate location was UTM NAD27 Z17 E462472, N3444338. Shovel Test 1 was excavated to a depth of 80 cm below surface and it contained historic artifacts from ground surface to 60 cm depth. The soil profile in this test was:

- 0-26 cm, dark grayish brown (10YR4/2) sandy loam;
- 26-38 cm, grayish brown (10YR5/2) sandy loam;
- 38-51 cm, yellowish brown (10YR5/6) sandy loam, and
- 51-80 cm, brownish yellow (10YR6/6) coarse sand.

Artifacts in Shovel Test 1 included: 9 tobacco pipe fragments, unidentified iron (possible square nail), brick, and modern
rubble associated with the recent post office demolition. The tobacco pipe fragments from this shovel test were reconstructed to form a single tobacco pipe, which had been badly burned in a fire. This pipe has a molded bowl with a wheat motif and a heel. This type of tobacco pipe probably dates after the American Revolution and prior to the American Civil War.

Shovel Test 2 was located 20 north of Shovel Test 1. It was excavated to a maximum depth of 79 cm below surface and it contained historic artifacts throughout. The soil profile consisted of:

- 0-15 cm, very dark grayish brown (10YR3/2) sandy loam;
- 15-25 cm, very dark brown (10YR2/2) sandy loam;
- 25-31 cm, grayish brown (10YR5/2) sandy loam;
- 31-43 cm, brown (10YR4/3) sandy loam;
- 43-60 cm, yellowish brown (10YR5/6) sand loam, and
- 60-79 cm, brownish yellow (10YR6/6) coarse sand.

This test apparently intersected a historic refuse deposit, possibly a trash pit, which probably dates to the early 20th century. Artifacts in Shovel Test 2 included: porcelain and ironstone ceramics, bottle glass, flatware, bone brush handle, a steel varmit trap, buckle, ammunition, a tin can, iron strapping, cut nails, an iron hoe, fishing rod hardware, iron pipe and other iron objects, olive shell, animal bone, chert biface fragment and chert shatter. The porcelain sherds in this test formed portions of a dark blue transfer printed teacup.

Shovel Test 3 was located 20 m north of Shovel Test 2. It was excavated to a maximum depth of 53 cm and artifacts were present to 30 cm below surface. Soils in this test were:

- 0-24 cm, dark yellowish brown (10YR3/4) sand loam;
- 24-30 cm, grayish brown (10YR5/2) sand loam;
- 30-48 cm, yellowish brown (10YR5/6) sand and,
- 48-53 cm, brownish yellow (10YR6/6) sand.

The topsoil was absent from this vicinity and was possibly removed as a result of the construction or demolition of the former post office building. Artifacts in Shovel Test 3 included: 1 Albany slip stoneware basal sherd and 1 modern clear glass crown cap bottle neck.

Shovel Test 4 was located 20 m east of Shovel Test 1 and approximately 4-5 meters northwest of the Keeper’s House. It was excavated to a maximum depth of 1 meter and artifacts were present to 25 cm below surface. Soils were:

- 0-25 cm, very dark grayish brown (10YR3/2) sand loam;
- 25-42 cm, light gray (10YR7/1) coarse sand;
- 42-60 cm, very dark brown (10YR2/2) silty sand loam and
- 60-100 cm, dark brown (10YR3/3) sand loam.

The coarse sand in this test at 42-60 cm below ground may represent over wash from a strong storm. Artifacts in Shovel Test 4 included: 1 machine cut nail and 1 wire nail.

Shovel Test 5 was located 20 m north of Shovel Test 4. It was excavated to a maximum depth of 69 cm and artifacts were
present to 52 cm below ground. Soils in this test consisted of:

- 0-29 cm, very dark grayish brown (10YR3/2) sand loam;
- 29-50 cm, light gray (10YR7/1) coarse sand;
- 50-60 cm, very dark grayish brown (10YR3/2) sand loam and,
- 60-69 cm, brownish yellow (10YR6/6) sand.

Artifacts in Shovel Test 5 included concrete, building rubble, bottle glass, and ironstone sherd. The coarse sand from 50-60 cm was similar to that observed in Shovel Test 4 and may represent a storm deposit.

Shovel Test 6 was located 20 m north of Shovel Test 5. It was excavated to a maximum depth of 78 cm below ground surface. Although stoneware and clear glass were observed on the surface in the vicinity of this test, the shovel test yielded no artifacts. Soils in this test were:

- 0-39 cm, very dark grayish brown (10YR3/2) sand loam;
- 39-60 cm, light gray (10YR7/1) coarse sand;
- 60-70 cm, very dark grayish brown (10YR3/2) sand loam and,
- 70-78 cm, brownish yellow (10YR6/6) sand.

The coarse sand from 60-70 cm was similar to that observed in Shovel Tests 4 and 5. This deposit is probably the result of a major storm or hurricane.

Shovel Test 7 was located 20 m east of Shovel Test 4. It was excavated to a maximum depth of 84 cm below ground and it yielded no cultural materials. Soils in this test consisted of:

- 0-40 cm, (10YR3/2) mottled sand loam;
- 40-70 cm, (10YR7/1) coarse sand and,
- 70-84 cm, black (10YR2/1) silty sand.

The coarse sand from 40-70 cm was similar to that observed in Shovel Tests 4-6, although it was considerably thicker in Shovel Test 7.

Shovel Test 8 was located 20 m north of Shovel Test 7. It was excavated to a maximum depth of 67 cm and artifacts were present to 26 cm below ground. Soils in this test were:

- 0-26 cm, very dark grayish brown (10YR3/2) sand loam;
- 26-61 cm, light gray (10YR7/1) coarse sand and,
- 61-67 cm, black (10YR2/1) silty sand.

This shovel test yielded the thickest deposit of coarse sand. Artifacts in Shovel Test 8 included: modern building rubble, asphalt, nails and glass. No artifacts were collected from this shovel test.

Shovel Test 9 encountered an intact brick floor at 30 cm below ground. This floor is shown in Figure 11. Two complete bricks, which are similar to “Savannah Gray” bricks, which were produced at the Hermitage Plantation upstream from Savannah beginning about 1810. Soils in this test consisted of fill dirt (10YR3/2) sand loam and rubble over an intact brick floor. The excavation was terminated when the intact bricks were encountered.

Artifacts in Shovel Test 9 included: modern glass, wire nails, a crown bottle cap, and one small ironstone sherd. Only the ceramic sherd was collected. A metal probe was used to follow the general outline of this brick floor. Probing revealed a building platform
that was approximately 13.5 m North-South by 6 m East-West. The shovel test was situated near the center of this building outline.

In addition to the artifacts from the nine shovel tests, two artifacts were collected from the general ground surface. These included a “Bennington” type blue glazed clay marble and a “3 Merry Widows” condom lid. The clay marble likely dates between 1860 and 1920 and was manufactured in Germany. The date span for the Merry Widows condom tin lid was not fully determined, although similar versions of these containers generally date before 1915 (Tone 2002:185). Examples of artifacts recovered from 9GN318 are shown in Figures 12 through 14.

The architectural plans for the second lighthouse complex, which was completed in 1872, do not indicate any building in the vicinity of these brick ruins. The 1920 Sanborn map shows three single story wood frame buildings in the general vicinity of this Block B although none of these are likely associated with the brick floor.

Several shovel tests on the northeastern side of the study area were devoid of artifacts and the soils in these tests suggested a natural slough, or possibly a very large ditch. The shovel testing was unable to extend deep enough to fully explain these soil conditions.

The GPR survey resulted in the location of many radar anomalies. A number of these are probably modern utility trenches or other recent disturbances. Many of the anomalies are linear and their age and function could not be determined from the GPR survey alone. These features should be verified by “ground truthing” test excavations.

Figure 15 shows a GPR plan view of Block A at approximately 80 cm below ground surface. This plan reveals several linear anomalies that are likely modern utility lines. It also reveals a large anomaly in the southern end of the block that may represent a building foundation or other large cultural feature. This feature measures at least 8 m East-West by 7 m North-South. Its age and function remains undetermined.
Figure 16 shows a GPR plan view of Block B at approximately 80 cm below ground surface. A series of strong GPR anomalies on Block B are associated with one or more buildings. These radar reflections are evident in this plan view. The brick floor that was discovered in Shovel Test 9, as well as the metal probing data, served to verify the GPR findings of a large cultural feature near the center of the development tract. A large circular feature, which may be a well, is located within the northern part of this building foundation. The GPR plan map indicates that the building’s dimensions are
about 14 m by 6 m, which is slightly larger than was indicated from the metal probe results. This suspected building appears to follow the same orientation as the present-day street system. That same orientation may actually have its origins in the 1730s and early 1740s, as Fort St. Simons had a similar orientation that was perpendicular to the waterfront.

The GPR plan of Block B also reveals several other potential cultural features. Other possible building foundations or very large features may be represented by this plan map. One area suggests a rectangular building with dimensions measuring more than 15 m East-West by 8 m North-South. This possible building is located east of the building investigated by Shovel Test 9. This larger possible building on the east side of Block B lies in between the areas sampled by shovel testing and is known only from the GPR information.

Other strong anomalies are located in the northeast and northwestern edges of Block B. Examination of the GPR plan at about 1.2 meters depth, indicates that both of these anomalies may be associated with a large ditch that runs slightly south of parallel to the paved road. Figure 17 is a plan of Block B at about 1.2 meters depth. These may all be associated with modern utility or sewerage lines. Shovel tests in the vicinity of those two anomalies were inconclusive regarding cultural deposits.

![Figure 12. GPR Block B Plan View at 80 cm Depth (Grid North is Oriented to the Top of the Page).](image-url)
The GPR data from Block B indicates that at least two relatively large buildings may have existed on this lot. Neither of these appears to coincide with the locations of the three wood frame buildings shown on the 1920 Sanborn map. The age of these buildings remains undetermined, although the bricks used in the westernmost building are consistent with an early to mid-19th century construction.

Figure 18 shows a composite view of Blocks A and B at approximately 80 cm below ground, which has been superimposed on a recent aerial photograph of the study area (Google Earth 2008). This overlay is approximately to scale.

Summary

The Coastal Georgia Historical Society completed their proposed construction of a large building complex on the area covered by the shovel test survey and GPR Block B. Figure 19 shows this development tract in July 2005, soon after the former St. Simons Island Post Office was razed. The site now contains an impressive brick structure that occupies most of the development tract. No further archaeological investigations took place after the LAMAR Institute and Georgia DNR survey investigation. Consequently, many of the GPR anomalies were not verified or fully characterized and the tantalizing shovel test findings were not augmented by any additional excavation data. This loss of historical information is most regrettable.
The shovel test survey produced a small collection of artifacts dating from the mid-19th through mid-20th centuries. Given the sampling interval that was employed (20 m spacing), other historic components may exist within the survey boundary but were not detected. The shovel test soil data suggests that a significant depositional event, such as a hurricane or strong storm surge, deposited a mantle of coarse beach sand on the eastern half of Block B. This beach sand deposit varied in thickness but was thickest in the northeastern section of the block. The silty soils underneath this beach deposit did not yield any cultural materials. Two possible explanations for the soils in this area are suggested. One is that this area is a natural slough or swale that was not suited for human habitation and was prone to frequent flooding. The second explanation is that this low-lying area was a cultural creation, possibly a moat or large ditch associated with Fort St. Simons and the shovel testing was unable to penetrate to sufficient depths to adequately determine the presence or absence of cultural materials in this area.

![Figure 14. GPR Blocks A and B Shown as Overlays on Modern Aerial Map (Google Earth 2008).](image)

Intact brick flooring from a presumed early to mid-19th century building was discovered in one shovel test and the building’s brick foundation was further delineated and confirmed by the use of a metal probe and the GPR survey. The GPR results show the building may have been as large as 14 m by 6 m, or 46 feet by 20 feet. Probing suggested a slightly smaller footprint for the building of 13.5 m by 6.5 m, or 44 feet by 21 feet. The building’s estimated dimensions based on a review of both datasets are 46 feet
North-South by 20 feet East-West. A building of this size with a solid brick floor may have been a dwelling house. This building may have contained a well within its foundation.

The exact age an function of this building was not determined. The brick are consistent with varieties produced in the Savannah area after 1810. This building may have been associated with the early lighthouse. It probably dates after the 18th century, so it is unlikely associated with Fort St. Simons. It may be a dwelling associated with the village that was located near the fort. It also may be associated with the Civil War activity on St. Simons Island. Since this building is now covered by a larger building (or quite likely destroyed by that construction), no further archaeological study of it is possible.

The GPR investigation of Block A, which is on land owned by Glynn County, revealed several linear anomalies that probably are modern utility lines and associated ditches. One large area with strong radar reflection is located on the southern end of Block A. This large anomaly may indicate a large building footprint or other large feature. Since this area was covered with asphalt, it was not investigated any further.

The findings from this study demonstrate that Site 9GN318 (St. Simons Lighthouse and Village) contain a variety of building ruins, cultural features, and artifacts from several occupation periods. GPR proved to be an effective survey tool in this locale and its further use to document other portions of the buried landscape is highly recommended. GPR is a non-destructive technique that can quickly provide planners with important information for future development projects. Clearly, the St. Simons Village area contains many buried ruins that await discovery and exploration. Careful archaeological study is a vital means of making these important discoveries.

GPR alone, however, cannot fully explain St. Simons’ buried stories. Ground truthing by systematic or selective shovel testing and larger test excavations should be part of the research arsenal. The nine shovel tests that were excavated by this project demonstrate the types of artifacts and feature information that lie buried at 9GN318. We suspect that the full spectrum of the historic and prehistoric occupation is considerably more diverse and abundant than was revealed by this very small sample. Archaeological excavations can be an exciting means of public interpretation and heritage preservation outreach, in addition to the scholarly information that it yields. Any excavations in the vicinity should be consistent with a scientific research design.

Only a small portion of the site was covered by the present study and more work in the area is certainly warranted. Many areas of the St. Simons Village may harbor buried evidence of the Island’s past and the full lateral extent of the site remains to be determined. These resources may include artifacts, features, and structure ruins associated with Fort St. Simons, the Barracks, and other related colonial settlements. Larson (1972, 1973) demonstrated that the ruins of the 1811 lighthouse remain relatively intact and this is another area that is suitable for future study.
In July 2004, researchers with the LAMAR Institute, the University of Tennessee at Chattanooga, the University of West Florida, and the Georgia Department of Natural Resources, Archaeological Services Unit devised the outline of a long term historical archaeology research plan for the St. Simons Island Village. This plan was submitted to the Coastal Georgia Historical Society for comment.

The plan met with a lackluster response. In the four years since this plan was formulated, some substantial changes have occurred that negatively affected the subterranean landscape in the St. Simons Village. Nevertheless, the basics of this plan, named the St. Simons Village Heritage Project, remain viable and are presented below with a few minor revisions.

Many important archaeological deposits are contained within 9GN318, the St. Simons Village site. The present survey findings serve to bolster the need for a long-term project that manages these resources in a responsible manner. Landowners and property managers are encouraged to “step up to the plate” and promote the identification of the subterranean world of St. Simons Island. These underground resources harbor unique, untold stories of American history. With proper stewardship and interpretive development that is based on sound research, these resources can be a fountain of knowledge that will attract many interested visitors and scholars to the region.

Goal of the Proposed Project
- To identify, delineate, and assess the remaining archaeological resources on the south end of St. Simons Island

Study Area--Includes a Mix of Civic and Private Property
- General Area—Neptune Park and adjacent areas of St. Simons Village (total study universe, approximately 90 acres, focused on approximately 9 acres)
- Focus Area—bounded west by Mallory Street; east by Twelth Street; north by Beachview; and south by Jekyll Sound

Project Benefits
- Identify and Help Save National Treasures
- Use new technology and research to discover specific sites
- Enhance St. Simons Tourism Experience, Heritage Tourism Means Increased Revenue
- Provide tourists with much sought after authentic and accurate visitor experience
- Inform the Public
- Contribute to local, regional and national scholarship, American History
- Use wide appeal of archaeology to excite tourists and locals alike, about St. Simons history
- Provides Essential Data for Land Use Planning and Wise Management of Resources

Research Design
- Locate, Identify, and Explore the History of Couper’s Point, St. Simons Village
- Prehistoric era
- Spanish mission San Buenaventura de Guadaluqui
- Oglethorpe’s Barracks, 42nd Regiment and others, 1736-1758
- Fort St. Simons, Fort Demere, Fort Delegal
- Spanish Encampment, July 1742
• 1771 Spanish Map—shows Stockade Fort, Fredericksburg, Custom House
• Revolutionary War
• 1st Lighthouse Era, 1807-1860s
• War of 1812
• Civil War
• Fort Brown, Confederate fort
• Union Occupation, Destruction of St. Simons Lighthouse
• 2nd Lighthouse Era, 1870s-Present

Archaeological Expectations
• Some intact areas with good research potential
• Some areas with limited or no research potential for intact archaeological remains, including eroded and disturbed areas

Multi-Disciplinary Project Approach
• Historical research
• Topographic mapping—Linked to Glynn County GIS
• Ground Penetrating Radar Survey (GPR)—Estimated 8 acres
• Shovel test survey—Systematic and opportunistic
• Limited test unit excavation—Maximum 32 square meters
• Public Outreach
• Public Interpretation
References Cited

Anonymous

Arrendondo, Antonio de

Barefoot, Patricia C.

Candler, Allen D.
1906 Proceedings of the President and Assistants from October 12, 1741, to October 30, 1754, By Georgia President and assistants. The Colonial Records of the State of Georgia. Volume VI. The Franklin Printing and Publishing Company, Atlanta, Georgia.

Cate, Margaret Davis
1930 Our Todays and Yesterdays; A Story of Brunswick and the Coastal Islands. Georgia Glover Brothers, Inc., Brunswick, Georgia.

1955 Early Days of Coastal Georgia. Fort Frederica Association, St. Simons Island, Georgia.

Conyers, Lawrence B.

Elliott, Daniel T.

2004 Ground Penetrating Radar Survey at the Woodbine Mound Site. LAMAR Institute and Rocquemore Research, Box Springs, Georgia.

2003b Archaeological Investigations at Fort Morris State Historic Site, Liberty County, Georgia. Southern Research Historic Preservation Consultants, Ellerslie, Georgia. Submitted to Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

Elliott, Rita Folse
2002 Horton House. Southern Research Historic Preservation Consultants, Ellerslie, Georgia. Submitted to Jekyll Island Authority and the Historic Preservation Division, Georgia Department of Natural Resources, Atlanta.

Forts Committee
1960 Fort St. Simon’s, Second of a Series, pp.4-6. Georgia Forts. Georgia Department of Archives and History, Morrow, Georgia.

Frobel, B.W.
1969 Map of Glynn County, Georgia. Surveyor General, Georgia Department of Archives and History, Morrow, Georgia.

Georgia Historical Society

Glynn County

Google Earth
2008 Google Earth.

Kimber, Edward

Larson, Lewis H., Jr.
1972 St. Simons Lighthouse Archaeological
United States, Naval War Records Office. and United States. Office of Naval Records and Library [ORN]

Willcox, Cornelius DeWitt